|
沙发
楼主 |
发表于 2019-1-31 01:11:06
|
只看该作者
5、三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等,交点为三角形的外心。
6、角平分线上的点到角两边的距离相等。
7、在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
8、 角平分线是到角的两边距离相等的所有点的集合。
9、三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
10、三角形三条中线交于一点,交点为三角形的重心。
11、三角形三条高线交于一点,交点为三角形的垂心。
三、平行四边的定义
1、定义:两线对边分别平行的四边形叫做平行四边形,
2、性质:(1)平行四边形的对边相等,(2)对角相等,(3)对角线互相平分。
3、判定:(1)一组对边平行且相等的四边形是平行四边形。
(2)两条对角线互相平分的四边形是平行四边形。
(3)两组对边分别相等的四边形是平行四边形。
(4)两组对角分别相等的四边形是平行四边形。
(5)一组对边平行,一组对角相等的四边形是平行四边形。
(6)一组对边平行,一条对角线被另一条对角线平分的四边形是平行四边形。
两个假命题:(1)一组对边平行,另一组对边相等的四边形是平行四边形。
(2)一组对边相等,一组对角相等的四边形是平行四边形。
四、矩形
1、定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
2、性质:(1)具有平行四边形的性质,(2)对角线相等,(3)四个角都是直角。
(4)矩形是轴对称图形,有两条对称轴。
3、判定:(1)有三个角是直角的四边形是矩形。
(2) 对角线相等的平行四边形是矩形。
五、菱形
1、定义:一组邻边相等的平行四边形叫做菱形。
2、性质:(1)具有平行四边形的性质,(2)四条边都相等,(3)两条对角线互相垂直,每一条对角线平分一组对角。(4) 菱形是轴对称图形,每条对角线所在的直线都是对称轴。
3、判定:(1)四条边都相等的四边形是菱形。
(2)对角线互相垂直的平行四边形是菱形。
(3)一条对角线平分一组对角的平行四边形是菱形。
六、 正方形
1、定义:一组邻边相等且有一个角是直角的平行四边形叫做正方形。
2、性质:正方形具有平行四边形、矩形、菱形的一切性质。
3、判定:(1)有一个内角是直角的菱形是正方形;
(2)有一组邻边相等的矩形是正方形;
(3)对角线相等的菱形是正方形;
(4) 对角线互相垂直的矩形是正方形。
七、梯形 定义:一组对边平行且另一组对边不平行的四边形叫做梯形
八、 等腰梯形 1、定义: 两条腰相等的梯形叫做等腰梯形。
2、性质:等腰梯形同一底上的两个内角相等,对角线相等。
3、 同一底上的两个内角相等的梯形是等腰梯形。
九、三角形的中位线
定义:连接三角形两边中点的线段。
性质:平行于第三边,并且等于第三边的一半。
十、梯形的中位线
定义:连接梯形两腰中点的线段。
性质:平行于两底,并且等于两底和的一半。 |
|