|
沙发
楼主 |
发表于 2019-1-29 18:27:19
|
只看该作者
五、教学过程
(一)、基础梳理
1、二次函数的解析式
(1)一般式
(2)顶点式
(3)两根式
2、二次函数的图像与性质
函数 《二次函数的图像与性质》教学设计 《二次函数的图像与性质》教学设计
(1)图像
(2)定义域
(3)值域
(4)单调性
(5)奇偶性
(6)对称性
思考:
1、若二次函数《二次函数的图像与性质》教学设计满足《二次函数的图像与性质》教学设计,则对称轴《二次函数的图像与性质》教学设计 ;
2、如何求复合函数单调性?
设计意图:基础知识的梳理为本节课的复习奠定基础,给出表格让学生回答填表,一方面检查学生对基础知识的复习掌握情况,另一方面使学生养成根据函数图像读函数性质的习惯,思考题的设计为后面的探究做铺垫。
(二)、例题讲解
设函数《二次函数的图像与性质》教学设计在区间[t,t+1]上最小值为《二次函数的图像与性质》教学设计,求《二次函数的图像与性质》教学设计的解析式
设计意图:例题设计的目的一方面体现本节课的重点,另一方面引导学生分析如何解决闭区间上的最值问题,并板书解题过程,在表达形式上给学生以示范作用,让学生学习用数学语言表述问题的过程。
(三)、课堂探究
(一)最值研究
1、已知函数《二次函数的图像与性质》教学设计,求《二次函数的图像与性质》教学设计在《二次函数的图像与性质》教学设计上最小值。
2、已知函数《二次函数的图像与性质》教学设计,若《二次函数的图像与性质》教学设计在区间《二次函数的图像与性质》教学设计上最大值为5,最小值为2,求a,b的值。
设计意图:本节课一个重点是二次函数最值问题,在例题讲解的基础生通过变式训练让学生讨论定区间变轴问题,再通过逆向思维训练解决利用最值求参数的问题,使学生掌握研究二次函数最值问题的方法,体会分类讨论的依据。
(二)单调性研究
1、已知函数《二次函数的图像与性质》教学设计在《二次函数的图像与性质》教学设计上是单调函数,则《二次函数的图像与性质》教学设计的取值范围?
2、若函数《二次函数的图像与性质》教学设计在区间《二次函数的图像与性质》教学设计上单调递减,求《二次函数的图像与性质》教学设计的取值范围?
3、记《二次函数的图像与性质》教学设计,若不等式《二次函数的图像与性质》教学设计的解集为《二次函数的图像与性质》教学设计,则关于《二次函数的图像与性质》教学设计的不等式《二次函数的图像与性质》教学设计的解集。
设计意图:探究二设置了三个问题,均为单调性的应用,分别是利用单调性求参数的取之范围或利用单调性解不等式。从中让学生感悟二次函数单调性的影响因素及复合函数单调性的研究方法和所注意的问题。总之,课堂探究的设置不断启发学生思维,使学生全方位,多角度认识二次函数的图像与性质,整个过程始终体现数行结合、分类讨论和函数与方程的思想;学生展示目的一方面检查讨论结果,另一方面通过展示发现学生思维误区,并及时更正,这也是学生再学习的过程;通过探究及时归纳各种类型问题思考的角度及应当注意的问题,使学生从更高角度认识所学知识和方法。
(四)、课堂小结
1、本节课复习二次函数在那些方面的问题?分别应当注意什么?
2、本节课用到哪些数学思想?
设计意图:通过问题形式进行复习,引发学生思考本节课所学知识和思想方法,培养学生的归纳总结能力,另外老师可以通过提问发现学生存在的问题及时纠正。
(五)、作业
1、若函数《二次函数的图像与性质》教学设计的定义域为《二次函数的图像与性质》教学设计,值域为《二次函数的图像与性质》教学设计,则实数m的取值范围。
2、若函数《二次函数的图像与性质》教学设计在《二次函数的图像与性质》教学设计是递增函数,则m的取值范围。
设计意图:本次作业设计两个题,一个是利用最值数形结合求参数取值范围,另一个是利用单调性求参数范围,目的使学生动脑思考和动手操作来巩固本节课所学知识和方法,老师通过学生的作业再次发现学生的掌握情况及存在的问题,以便自己更好的调整教学。 |
|