|
华师版八年级数学下册反比例函数的图象和性质教学案导学案
【学习目标】
1.让学生理解反比例函数的图象是双曲线,并会利用描点法画出反比例函数的图象.
2.让学生结合图象说出它的性质,并会利用反比例函数的图象解决有关问题.
【学习重点】
反比例函数的性质.
【学习难点】
反比例函数的性质.
行为提示:创设问题情景导入,激发学生的求知欲望.
行为提示:让学生阅读教材,尝试完成“自学互研”的所有内容,并适时给学生提供帮助,大部分学生完成后,进行小组交流.
知识链接:画函数图象的三步骤:列表、描点、连线.
解题思路:反比例函数的一种表示形式:xy=k(k≠0).所以k的值就等于横、纵坐标的积.情景导入 生成问题
【旧知回顾】
1.什么是反比例函数?
答:一般地,形如y=kx(k是常数,k≠0)的函数叫做反比例函数.
2.一次函数的图象和性质是什么?
答:一次函数的图象是一条直线.当k>0,b≠0时,直线经过一、二、三象限或一、三、四象限且y随x的增大而增大;当k<0,b≠0时,直线经过一、二、四象限或经过二、三、四象限且y随x的增大而减小.
自学互研 生成能力
知识模块一 反比例函数的图象
【自主探究】
1.画出函数y=6x的图象.
解:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
x … -6 -3 -2 -1 … 1 2 3 6 …
y … -1 -2 -3 -6 … 6 3 2 1 …
描点,连线.用平滑的曲线将第一象限内各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限内各点依次连起来,得到图象的另一分支.这两个分支合起来,就是反比例函数的图象.如图(1):
,图(1)) ,图(2))
2.反比例函数的图象有两支,通常称为双曲线.
3.同理画出反比例函数y=-6x的图象.如图(2).
4.反比例函数的图象只能通过描点作图法画出,这也是学习和研究函数的基本功.
【合作探究】
范例1:某反比例函数的图象经过点(-1,12),则下列各点中,此函数图象也经过的点是( C )
A.(3,4) B.(4,3) C.(-3,4) D.(-4,-3)
方法指导:在坐标系中求三角形的面积时,经常设出某个点的坐标,根据象限的特征表示出边和高的距离.从而求解.
|
|