绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4724|回复: 5
打印 上一主题 下一主题

六年级数学下册第六单元整理和复习知识点

[复制链接]
跳转到指定楼层
楼主
发表于 2018-12-28 01:20:58 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
六年级数学下册第六单元整理和复习知识点
数学概念整理

整数部分:

十进制计数法:一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”。

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。

四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。

整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。

小数部分:

把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。

小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数。

小数的读法:整数部分整数读,小数点读点,小数部分顺序读。

小数的写法:数点写在个位右下角。

小数的性质:小数末尾添0去0大小不变。

小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。

小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推.。

分数和百分数

一、分数和百分数的意义

1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数.在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。

2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数.也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。

3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。

4、成数:几成就是十分之几。

二、分数的种类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

三、分数和除法的关系及分数的基本性质

1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。

2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。

3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。


分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2018-12-28 01:21:02 | 只看该作者

四、约分和通分

1、分子、分母是互质数的分数,叫做最简分数。

2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。

3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

倒 数

1、乘积是1的两个数互为倒数。

2、求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

3、1的倒数是1,0没有倒数

分数的大小比较

1、 分母相同的分数,分子大的那个分数就大。

2、 分子相同的分数,分母小的那个分数就大。

3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。

4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。

百分数与折数、成数的互化:

例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。

纳税和利息

税率:应纳税额与各种收入的比率。

利率:利息与本金的百分率.由银行规定按年或按月计算。

利息的计算公式:利息=本金×利率×时间

百分数与分数的区别主要有以下三点:

1、意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。

2、应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较.而分数常常是在测量、计算中,得不到整数结果时使用。

3、书写形式不同.百分数通常不写成分数形式,而采用百分号“%”来表示.如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数.而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成
回复

使用道具 举报

板凳
 楼主| 发表于 2018-12-28 01:21:05 | 只看该作者
带分数。

数的整除

整除的意义

整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)

除尽的意义  甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。

约数和倍数

1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。

2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。

3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。

奇数和偶数

1、能被2整除的数叫偶数.例如:0、2、4、6、8、10……注:0也是偶数

2、不能被2整除的数叫基数.例如:1、3、5、7、9……

整除的特征

1、能被2整除的数的特征:个位上是0、2、4、6、8。

2、能被5整除的数的特征:个位上是0或5。

3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。

质数和合数

1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。

2、一个数除了1和它本身外,还有别的约数,这个数叫做合数.。

3、1既不是质数,也不是合数。

4、自然数按约数的个数可分为:质数、合数

5、自然数按能否被2整除分为:奇数、偶数

分解质因数

1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数.例如:18=3×3×2,3和2叫做18的质因数。

2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.通常用短除法来分解质因数。

3、几个数公有的因数叫做这几个数的公因数.其中最大的一个叫这几个数的最大公因数.公因数只有1的两个数,叫做互质数.几个数公有的倍数叫做这几个数的公倍数.其中最大的一个叫这几个数的最大公倍数。

4、特殊情况下几个数的最大公约数和最小公倍数.(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。

奇数和偶数的运算性质

1、相邻两个自然数之和是奇数,之积是偶数。

2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,

奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数

整数、小学、分数四则混合运算

四则运算的法则

1、加法

a、整数和小数:相同数位对齐,从低位加起,满十进一

b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加 。

2、减法

a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减

b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减 。3、乘法
回复

使用道具 举报

地板
 楼主| 发表于 2018-12-28 01:21:09 | 只看该作者

a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同

b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简 。

4、除法

a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 。

运算定律

加法交换律 a+b=b+a

结合律 (a+b)+c=a+(b+c)

减法性质 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交换律 a×b=b×a

结合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性质 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。

推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。

一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。

商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。

推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。

被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。

利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数。

如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。

简易方程

用字母表示数

用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。
回复

使用道具 举报

5#
 楼主| 发表于 2018-12-28 01:21:12 | 只看该作者

用字母表示数的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写.数与数相乘,乘号不能省略。

2、当1和任何字母相乘时,“ 1” 省略不写。

3、数字和字母相乘时,将数字写在字母前面。

含有字母的式子及求值

求含有字母的式子的值或利用公式求值,应注意书写格式

等式与方程

表示相等关系的式子叫等式。

含有未知数的等式叫方程。

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程。

方程的解和解方程

使方程左右两边相等的未知数的值,叫方程的解。

求方程的解的过程叫解方程。

在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。

解方程的方法

1、直接运用四则运算中各部分之间的关系去解。如x-8=12

加数+加数=和 一个加数=和-另一个加数

被减数-减数=差 减数=被减数-差 被减数=差+减数

被乘数×乘数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=除数×商

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

先把3x看作一个数,然后再解。

3、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。

4、利用运算定律或性质,使方程变形,然后再解.如:2.2x+7.8x=20

先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。

比和比例

比和比例应用题

在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。

解题策略

按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

正、反比例应用题的解题策略

1、审题,找出题中相关联的两个量

2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

3、设未知数,列比例式

4、解比例式

5、检验,写答语

字母和表达式在不同场合有不同的意义.如:

5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;

Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;

(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;
回复

使用道具 举报

6#
 楼主| 发表于 2018-12-28 01:21:16 | 只看该作者

量的计算

事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量.用来作为计量标准的量叫做计量单位。

数+单位名称=名数

只带有一个单位名称的叫做单名数。

带有两个或两个以上单位名称的叫做复名数

高级单位的数如把米改成厘米 低级单位的数如把厘米改成米

只带有一个单位名称的数叫做单名数.如:5小时, 3千克 (只有一个单位的)

带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)

56平方分米=(0.56)平方米 就是单名数转化成单名数

560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子。

高级单位与低级单位是相对的。比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.。

常用计算公式表

(1)长方形面积=长×宽,计算公式s=a b

(2)正方形面积=边长×边长,计算公式s=a × a

(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2

(4)正方形周长=边长×4,计算公式s= 4a

(5)平形四边形面积=底×高,计算公式s=a h

(6)三角形面积=底×高÷2,计算公式s=a×h÷2

(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2

(8)长方体体积=长×宽×高,计算公式v=a bh

(9)圆的面积=圆周率×半径平方,计算公式s=лr2

(10)正方体体积=棱长×棱长×棱长,计算公式v=a3

(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh

(12)圆柱的体积=底面积×高,计算公式v=s h

1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天

闰年年份是4的倍数,整百年份须是400的倍数。

平年一年365天,闰年一年366天。

公元1年—100年是第一世纪,公元1901—2000是第二十世纪。

平面图形的认识和计算

三角形

1、三角形是由三条线段围成的图形.它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。

2、三角形的内角和是180度

3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形

4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形

四边形

1、四边形是由四条线段围成的图形。

2、任意四边形的内角和是360度。

3、只有一组对边平行的四边形叫梯形。

4、两组对边分别平行的四边形叫平行四边形,它容易变形.长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。



圆是平面上的一种曲线图形.同圆或等圆的直径都相等,直径等于半径的2倍.圆有无数条对称轴.圆心确定圆的位置,半径确定圆的大小。

扇形 由圆心角的两条半径和它所对的弧围成的图形.扇形是轴对称图形。

轴对称图形

1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。

2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。

周长和面积

1、平面图形一周的长度叫做周长。

2、平面图形或物体表面的大小叫做面积。

3、常见图形的周长和面积计算公式。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-12-19 23:49

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表