|
《平行四边形的面积》教后反思
这节课是在学生已经掌握了数格子的方法得到面积的基础上,学生也已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。现针对实际课堂教学效果进行自我反思。
一、创设情境,方法巧妙迁移
数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的"数格子"的方法解决问题。让学生积极主动地投入到数学活动中去。我创设了学生熟悉的生活情境,学生很喜欢,学生也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,结合求面积的实际操作性,进而引发学生的猜测,并进一步引导学生将平行四边形的面积转化成长方形的面积进行推导。
二、学生自主合作探究
苏霍姆林斯基说过:"在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。"动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中我先是给学生提供学习单,由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,通过发现提出求平行四边形面积的猜想。接着是读学习导航,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,很好的掌握了平行四边形公式的推导过程。
三、拓展方法,渗透数学思想
教学时,以学生的验证推导为主,先引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。学生探究出了将平行四边形转化成长方形的三种方法,并通过操作加以演示推导。在学生探究后,我出示了第四种方法,还让学生观察这几种方法有什么相同点,从而让学生明确自己刚才所运用的转化的思想方法。在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但课堂上能够对学生起到导向和引领的有效的评价语言还需要进一步提升。教学是一门有着缺憾的艺术。做为教者的我们,只有用心思考,不断改进,我们的课堂才会日臻具有艺术性!
|
|