|
教学内容:教学91页的例2,完成随后的“练一练”。
教材简析:
本堂课教学用假设的策略来解决问题.例2是一个类似"鸡兔同笼"的问题通过解决这个实际问题,让学生进一步体会假设策略在不同情景中的应用特点和思考过程.在例1的基础上,本堂课在呈现问题后,直接提出:你准备怎样来解决这个问题?启发学生在讨论中主动想到假设的策略.然后分别通过画图和列表呈现了两种不同的假设方法.通过对假设后数量关系的变化情况进行研究,从而推算出正确的答案.让学生在对解决问题过程的反思中,进一步明确应该如何来实施这个假设的策略。
教学目标:
1、 使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、
定解题思路,并有效的解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生理解并运用假设的策略解决问题。
教学难点:
当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。
教学过程:
一、导入:
1.回顾策略:昨天我们学习了解决问题的策略,回想一下,到现在为止,我们学过了哪些策略来解决问题?
根据学生回答板书:画图、列表、倒推、替换
2.提出课题:利用这些策略可以方便地帮助我们解决一些实际问题。今天,我们继续来研究解决问题的策略。(揭题)
[设计意图:这段谈话主要是帮助学生回想起一些学过的策略,以便在后面的学习中能让学生进行有目的的迁移。]
二、新课:
1、创设情景,提出假设
(边描述边出示例题)上次秋游,我们去了黄山湖公园,五(1)班的42位同学去划船,他们一共租用了10条船,正好坐满。每只大船能坐5人,每只小船能坐3人。你知道他们分别租用了几条大船和几条小船吗?
提问:你准备怎样来解决这个问题?
学生可能一下子想不到提出假设,这时可提示学生:在解决例1时,碰到这样的问题我们可以先怎样想?
学生独立思考交流想法。
根据学生回答出示各种假设:
a、假设10只都是大船
b、假设10只都是小船
教师:你们的想法都是把船假设成同一种船。还有其他想法吗?
c、假设5只大船,5只小船。
教师:你和他们不同,是把船假设成不同的船
[设计意图:对假设策略的提出是学生遇到的第一个困难,我们利用以前学过的知识,来引导帮助学生想到假设的策略,并且使学生明确可以从两个角度提出假设:可以都假设成同一种船,也可以假设成两种不同的船,这里需要老师作充分的引导。]
2、借助画图,初步感知调整策略
谈话:刚才同学们提出了三种假设,下面我们先来研究假设成同一种船的情况。(1)讨论画图:
a.如果10只都是大船,那我们可以借助以前学过的什么策略来推算出大船和小船各有多少只呢?(学生说不出来可以追问:想想,上节课我们是用什么策略把数量关系清晰的表达出来的?)学生回答:画图
b.你准备怎么来画呢?引导学生:用简明的符号来表示船和人(课件出示10只大船图,并给学生也提供10只大船图)
(2)研究调整:
a.发现矛盾引发思考:
问题1:假设10只船都是大船,从图上我们可以看出能多坐几个人呢?为什么会多出来呢?
学生独立思考并小组交流
反馈明确:当我们把10只船都假设成大船时,也就是把一些小船看成了大船;当一只小船被看成大船时,每条船会多出2人,所以会多出8人(板书:多出8人)
b.借助画图,研究调整:
问题2:那需要把几只大船调整为小船,才能使10只船正好坐42人呢?)(板书:大船→小船)
先想一想,然后再图上画一画。(学生在提供的图上画一画,教师巡视)
集体交流:选择比较典型的2种画法,上台展示并让学生说说想法
追问:你是怎么想到把4条大船调整为4条小船的呢?
帮助学生初步感知调整策略:一条小船看成一条大船会多出2人,多出的8人正好是4个2人,所以要把4条大船调整为4条小船。
板书:5-3=2(人)
8÷2=4(条)
3、借助列表,再次感知调整策略
谈话:刚才我们借助画图找到了调整的策略,解决了实际问题。我们还可以借助什么方法来寻找调整的策略呢?(列表)这位同学把10只船假设成5只大船和5只小船这样两种不同的船,那接下来我们就借助以前学过的列表的方法来试着推算大船和小船各有多少只。
|
|