|
在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
(学生活动)请同学们现在给予说明一下.
请三位同学到黑板板书,老师点评.
例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?
分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.
(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,
又有AO=CO是半径,∴Rt△AOE≌Rt△COF,
∴AE=CF,∴AB=CD,又可运用上面的定理得到 =
解:(1)如果∠AOB=∠COD,那么OE=OF
理由是:∵∠AOB=∠COD
∴AB=CD
∵OE⊥AB,OF⊥CD
∴AE= AB,CF= CD
∴AE=CF
又∵OA=OC
∴Rt△OAE≌Rt△OCF
∴OE=OF
(2)如果OE=OF,那么AB=CD, = ,∠AOB=∠COD
理由是:
∵OA=OC,OE=OF
∴Rt△OAE≌Rt△OCF
∴AE=CF
又∵OE⊥AB,OF⊥CD
∴AE= AB,CF= CD
∴AB=2AE,CD=2CF
∴AB=CD
∴ = ,∠AOB=∠COD
三、巩固练习
教材P89 练习1 教材P90 练习2.
四、应用拓展
例2.如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.
(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
(3) (4)
分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等.
上述结论仍然成立,它的证明思路与上面的题目是一模一样的.
解:(1)AB=CD
理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F
∵∠APM=∠CPM
∴∠1=∠2
OE=OF
连结OD、OB且OB=OD
∴Rt△OFD≌Rt△OEB
∴DF=BE
根据垂径定理可得:AB=CD
(2)作OE⊥AB,OF⊥CD,垂足为E、F
∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°
∴Rt△OPE≌Rt△OPF
∴OE=OF
连接OA、OB、OC、OD
易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF
∴∠1+∠2=∠3+∠4
∴AB=CD
五、归纳总结(学生归纳,老师点评)
本节课应掌握:
1.圆心角概念.
2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用.
六、布置作业
1.教材P94-95 复习巩固4、5、6、7、8.
2.选用课时作业设计.
第二课时作业设计
一、选择题.
1.如果两个圆心角相等,那么( )
A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对
2.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是( )
A. =2 B. > C. <2 D.不能确定
3.如图5,⊙O中,如果 =2 ,那么( ).
A.AB=AC B.AB=AC C.AB<2AC D.AB>2AC
(5) (6)
二、填空题
1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.
2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
3.如图6,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.
三、解答题
1.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上.
(1)求证: = ;
(2)若C、D分别为OA、OB中点,则 成立吗?
2.如图,以 ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求 的度数和 的度数.
3.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.
答案:
一、1.D 2.A 3.C
二、1.圆的旋转不变形 2. 或 3.3
三、1.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,OA=OB,
∵AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,
∴∠AOM=∠BON,∴
(2) www.1230.org 初中数学资源网
2.BE的度数为80°,EF的度数为50°.
3.连结AC、BD,∵C、D是 三等分点,
∴AC=CD=DB,且∠AOC= ×90°=30°,
∵OA=OC,∴∠OAC=∠OCA=75°,
又∠AEC=∠OAE+∠AOE=45°+30°=75°,
∴AE=AC,
同理可证BF=BD,∴AE=BF=CD
24.1 圆(第3课时)
教学内容
1.圆周角的概念.
2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.
推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
教学目标
1.了解圆周角的概念.
|
|