绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

人教版中学九年级上册数学全册教案备课集

[复制链接]
36#
 楼主| 发表于 2010-7-30 10:10:00 | 只看该作者

2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
    3.垂径定理及其推论以及它们的应用.
    六、布置作业
    1.教材P94  复习巩固1、2、3.
    2.车轮为什么是圆的呢?
    3.垂径定理推论的证明.
    4.选用课时作业设计.
第一课时作业设计
一、选择题.
1.如图1,如果AB为⊙O的直径,弦CD⊥AB,垂足为E,那么下列结论中,错误的是(  ).
A.CE=DE    B.     C.∠BAC=∠BAD    D.AC>AD
         
       (1)                  (2)                       (3)
2.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是(  )
A.4     B.6     C.7      D.8
3.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是(  )
A.AB⊥CD     B.∠AOB=4∠ACD    C.     D.PO=PD
二、填空题
1.如图4,AB为⊙O直径,E是 中点,OE交BC于点D,BD=3,AB=10,则AC=_____.
            
                  (4)                               (5)
2.P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为________;最长弦长为_______.
3.如图5,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______(只需写一个正确的结论)
三、综合提高题
1.如图24-11,AB为⊙O的直径,CD为弦,过C、D分别作CN⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.




2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.




3.(开放题)AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=8,求∠DAC的度数.






答案:
一、1.D  2.D  3.D
二、1.8  2.8  10  3.AB=CD
三、1.AN=BM  理由:过点O作OE⊥CD于点E,则CE=DE,且CN∥OE∥DM.
    ∴ON=OM,∴OA-ON=OB-OM,
∴AN=BM.
2.过O作OF⊥CD于F,如右图所示
∵AE=2,EB=6,∴OE=2,
∴EF= ,OF=1,连结OD,
在Rt△ODF中,42=12+DF2,DF= ,∴CD=2 .
3.(1)AC、AD在AB的同旁,如右图所示:  
    ∵AB=16,AC=8,AD=8 ,
    ∴ AC= ( AB),∴∠CAB=60°,
    同理可得∠DAB=30°,
    ∴∠DAC=30°.
  (2)AC、AD在AB的异旁,同理可得:∠DAC=60°+30°=90°.






24.1 圆(第2课时)
    教学内容
    1.圆心角的概念.
    2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
    3.定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等.
    在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
    教学目标
    了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.
    通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.
    重难点、关键
    1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.
    2.难点与关键:探索定理和推导及其应用.
    教学过程
    一、复习引入
    (学生活动)请同学们完成下题.
已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.

    老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.
    二、探索新知
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.

    (学生活动)请同学们按下列要求作图并回答问题:
如图所示的⊙O中,分别作相等的圆心角∠AOB和∠A′OB′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?

     = ,AB=A′B′
    理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′
    ∴半径OB与OB′重合
    ∵点A与点A′重合,点B与点B′重合
    ∴ 与 重合,弦AB与弦A′B′重合
    ∴ = ,AB=A′B′
    因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.
    在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作.
(学生活动)老师点评:如图1,在⊙O和⊙O′中,分别作相等的圆心角∠AOB和∠A′O′B′得到如图2,滚动一个圆,使O与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与O′A′重合.
  
             (1)                                 (2)
    你能发现哪些等量关系?说一说你的理由?
    我能发现: = ,AB=A/B/.
    现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
    同样,还可以得到:
    在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.
   
回复

使用道具 举报

37#
 楼主| 发表于 2010-7-30 10:11:00 | 只看该作者

在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.
    (学生活动)请同学们现在给予说明一下.
    请三位同学到黑板板书,老师点评.
    例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
    (1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?

    分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.
(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,
又有AO=CO是半径,∴Rt△AOE≌Rt△COF,
∴AE=CF,∴AB=CD,又可运用上面的定理得到 =
    解:(1)如果∠AOB=∠COD,那么OE=OF
    理由是:∵∠AOB=∠COD
    ∴AB=CD
    ∵OE⊥AB,OF⊥CD
    ∴AE= AB,CF= CD
    ∴AE=CF
    又∵OA=OC
    ∴Rt△OAE≌Rt△OCF
    ∴OE=OF
    (2)如果OE=OF,那么AB=CD, = ,∠AOB=∠COD
    理由是:
    ∵OA=OC,OE=OF
    ∴Rt△OAE≌Rt△OCF
    ∴AE=CF
    又∵OE⊥AB,OF⊥CD
    ∴AE= AB,CF= CD
    ∴AB=2AE,CD=2CF
    ∴AB=CD
    ∴ = ,∠AOB=∠COD
    三、巩固练习
    教材P89  练习1    教材P90  练习2.
    四、应用拓展
    例2.如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.
    (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
            
                 (3)                                  (4)
    分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等.
    上述结论仍然成立,它的证明思路与上面的题目是一模一样的.
    解:(1)AB=CD
    理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F
    ∵∠APM=∠CPM
    ∴∠1=∠2
    OE=OF
    连结OD、OB且OB=OD
    ∴Rt△OFD≌Rt△OEB
    ∴DF=BE
    根据垂径定理可得:AB=CD
    (2)作OE⊥AB,OF⊥CD,垂足为E、F
    ∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°
    ∴Rt△OPE≌Rt△OPF
    ∴OE=OF
    连接OA、OB、OC、OD
    易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF
    ∴∠1+∠2=∠3+∠4
    ∴AB=CD
    五、归纳总结(学生归纳,老师点评)
    本节课应掌握:
    1.圆心角概念.
    2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用.
    六、布置作业
    1.教材P94-95  复习巩固4、5、6、7、8.
    2.选用课时作业设计.
第二课时作业设计
    一、选择题.
    1.如果两个圆心角相等,那么(  )
      A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等
      C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对
    2.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB与CD关系是(  )
      A. =2     B. >     C. <2     D.不能确定
    3.如图5,⊙O中,如果 =2 ,那么(  ).
A.AB=AC     B.AB=AC    C.AB<2AC    D.AB>2AC
               
                (5)                               (6)
    二、填空题
    1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.
    2.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
3.如图6,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.
    三、解答题
    1.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上.
    (1)求证: = ;
(2)若C、D分别为OA、OB中点,则 成立吗?

2.如图,以 ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,若∠D=50°,求 的度数和 的度数.

    3.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.

答案:
    一、1.D  2.A  3.C
    二、1.圆的旋转不变形  2. 或   3.3
    三、1.(1)连结OM、ON,在Rt△OCM和Rt△ODN中OM=ON,OA=OB,
∵AC=DB,∴OC=OD,∴Rt△OCM≌Rt△ODN,
∴∠AOM=∠BON,∴
    (2) www.1230.org 初中数学资源网
    2.BE的度数为80°,EF的度数为50°.
3.连结AC、BD,∵C、D是 三等分点,
∴AC=CD=DB,且∠AOC= ×90°=30°,
∵OA=OC,∴∠OAC=∠OCA=75°,
又∠AEC=∠OAE+∠AOE=45°+30°=75°,
∴AE=AC,
同理可证BF=BD,∴AE=BF=CD
24.1 圆(第3课时)

    教学内容
    1.圆周角的概念.
    2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弦所对的圆心角的一半.
    推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.
    教学目标
    1.了解圆周角的概念.
   
回复

使用道具 举报

38#
 楼主| 发表于 2010-7-30 10:11:00 | 只看该作者

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    4.熟练掌握圆周角的定理及其推理的灵活运用.
    设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.
    重难点、关键
    1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.
    2.难点:运用数学分类思想证明圆周角的定理.
    3.关键:探究圆周角的定理的存在.
    教学过程
    一、复习引入
    (学生活动)请同学们口答下面两个问题.
    1.什么叫圆心角?
    2.圆心角、弦、弧之间有什么内在联系呢?
    老师点评:(1)我们把顶点在圆心的角叫圆心角.
    (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.
    刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.
    二、探索新知
问题:如图所示的⊙O,我们在射门游戏中,设E、F是球门,设球员们只能在 所在的⊙O其它位置射门,如图所示的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.
     现在通过圆周角的概念和度量的方法回答下面的问题.
    1.一个弧上所对的圆周角的个数有多少个?
    2.同弧所对的圆周角的度数是否发生变化?
    3.同弧上的圆周角与圆心角有什么关系?
    (学生分组讨论)提问二、三位同学代表发言.
    老师点评:www.1230.org 初中数学资源网
    1.一个弧上所对的圆周角的个数有无数多个.
    2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.
    3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.
    下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”
    (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示
    ∵∠AOC是△ABO的外角
    ∴∠AOC=∠ABO+∠BAO
    ∵OA=OB
    ∴∠ABO=∠BAO
    ∴∠AOC=∠ABO
    ∴∠ABC= ∠AOC
(2)如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC= ∠AOC吗?请同学们独立完成这道题的说明过程.
    老师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.
(3)如图,圆周角∠ABC的两边AB、AC在一条直径OD的同侧,那么∠ABC= ∠AOC吗?请同学们独立完成证明.
    老师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO= ∠AOD- ∠COD= ∠AOC
    现在,我如果在画一个任意的圆周角∠AB′C,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.
    从(1)、(2)、(3),我们可以总结归纳出圆周角定理:
    在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    进一步,我们还可以得到下面的推导:
    半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    下面,我们通过这个定理和推论来解一些题目.
    例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?
     分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.
    解:BD=CD
    理由是:如图24-30,连接AD
    ∵AB是⊙O的直径
    ∴∠ADB=90°即AD⊥BC
    又∵AC=AB
    ∴BD=CD
    三、巩固练习
    1.教材P92  思考题.
    2.教材P93  练习.
    四、应用拓展
例2.如图,已知△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为R,求证: = = =2R.
    分析:要证明 = = =2R,只要证明 =2R, =2R, =2R,即sinA= ,sinB= ,sinC= ,因此,十分明显要在直角三角形中进行.
     证明:连接CO并延长交⊙O于D,连接DB
    ∵CD是直径
    ∴∠DBC=90°
    又∵∠A=∠D
    在Rt△DBC中,sinD= ,即2R=
    同理可证: =2R, =2R
    ∴ = = =2R
    五、归纳小结(学生归纳,老师点评)
    本节课应掌握:
    1.圆周角的概念;
    2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半;
    3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
    4.应用圆周角的定理及其推导解决一些具体问题.
    六、布置作业
    1.教材P95  综合运用9、10、11  拓广探索12、13.
2.选用课时作业设计.












第三课时作业设计
    一、选择题
   
回复

使用道具 举报

39#
 楼主| 发表于 2010-7-30 10:12:00 | 只看该作者

1.如图1,A、B、C三点在⊙O上,∠AOC=100°,则∠ABC等于(  ).
A.140°    B.110°    C.120°    D.130°
                     
           (1)                       (2)                       (3)
    2.如图2,∠1、∠2、∠3、∠4的大小关系是(  )
      A.∠4<∠1<∠2<∠3     B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2      D.∠4<∠1<∠3=∠2
    3.如图3,AD是⊙O的直径,AC是弦,OB⊥AD,若OB=5,且∠CAD=30°,则BC等于(  ).
A.3     B.3+      C.5-      D.5
    二、填空题
    1.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.
2.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.
               
                   (4)                              (5)
3.如图5,已知△ABC为⊙O内接三角形,BC=1,∠A=60°,则⊙O半径为_______.
   
三、综合提高题
1.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

   
2.如图,已知AB=AC,∠APC=60°
    (1)求证:△ABC是等边三角形.
(2)若BC=4cm,求⊙O的面积.


    3.如图,⊙C经过坐标原点,且与两坐标轴分别交于点A与点B,点A的坐标为(0,4),M是圆上一点,∠BMO=120°.
    (1)求证:AB为⊙C直径.
    (2)求⊙C的半径及圆心C的坐标.

答案:
    一、1.D  2.B  3.D
    二、1.120°或60°  2.90°  3.
三、1.   2.(1)证明:∵∠ABC=∠APC=60°,
又 ,∴∠ACB=∠ABC=60°,∴△ABC为等边三角形.
(2)解:连结OC,过点O作OD⊥BC,垂足为D,
在Rt△ODC中,DC=2,∠OCD=30°,
设OD=x,则OC=2x,∴4x2-x2=4,∴OC=  
  3.(1)略  (2)4,(-2 ,2)

www.1230.org 初中数学资源网














点和圆的位置关系
教学目标
(一)教学知识点
了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.
(二)能力训练要求
1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.
2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.
(三)情感与价值观要求
1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.
2.学会与人合作,并能与他人交流思维的过程和结果.
教学重点
1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.
2.掌握过不在同一条直线上的三个点作圆的方法.
3.了解三角形的外接圆、三角形的外心等概念.
教学难点
经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.
教学方法
教师指导学生自主探索交流法.
教具准备
投影片三张
第一张:(记作§3.4A)
第二张:(记作§3.4B)
第三张:(记作§3.4C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.
Ⅱ.新课讲解
1.回忆及思考
投影片(§3.4A)
1.线段垂直平分线的性质及作法.
2.作圆的关键是什么?
[生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.
作法:如下图,分别以A、B为圆心,以大于 AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段AB的垂直平分线,直线CD上的任一点到A与B的距离相等.

[师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?
[生]由定义可知,作圆的问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.
2.做一做(投影片§3.4B)
(1)作圆,使它经过已知点A,你能作出几个这样的圆?
(2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?
(3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?
[师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.
[生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).


回复

使用道具 举报

40#
 楼主| 发表于 2010-7-30 10:13:00 | 只看该作者

(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).
(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.
因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.
[师]大家的分析很有道理,究竟应该怎样找圆心呢?
3.过不在同一条直线上的三点作圆.
投影片(§3.4C)

作法        图示
1.连结AB、BC         
2.分别作AB、BC的垂直
平分线DE和FG,DE和
FG相交于点O         
3.以O为圆心,OA为半径作圆
⊙O就是所要求作的圆         

他作的圆符合要求吗?与同伴交流.
[生]符合要求.
因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.
[师]由上可知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.
不在同一直线上的三个点确定一个圆.
4.有关定义
由上可知,经过三角形的三个顶点可以作一个圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个三角形叫这个圆的内接三角形.
外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).
Ⅲ.课堂练习
已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?
解:如下图.

O为外接圆的圆心,即外心.
锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.
Ⅳ.课时小结
本节课所学内容如下:
1.经历不在同一条直线上的三个点确定一个圆的探索过程.
方法.
3.了解三角形的外接圆,三角形的外心等概念.
Ⅴ.课后作业
习题3.6
Ⅵ.活动与探究
如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?

解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.
板书设计
§3.4  确定圆的条件
一、1.回忆及思考(投影片§3.4A)
2.做一做(投影片§3.4B)
3.过不在同一条直线上的三点作圆.
4.有关定义
二、课堂练习
三、课时小结
四、课后作业



直线和圆的位置关系
教学目标
(一)教学知识点
1.理解直线与圆有相交、相切、相离三种位置关系.
2.了解切线的概念,探索切线与过切点的直径之间的关系.
(二)能力训练要求
1.经历探索直线与圆位置关系的过程,培养学生的探索能力.
2.通过观察得出“圆心到直线的距离d和半径r的数量关系”与“直线和圆的位置关系”的对应与等价,从而实现位置关系与数量关系的相互转化.
(三)情感与价值观要求
通过探索直线与圆的位置关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.
在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心.
教学重点
经历探索直线与圆位置关系的过程.
理解直线与圆的三种位置关系.
了解切线的概念以及切线的性质.
教学难点
经历探索直线与圆的位置关系的过程,归纳总结出直线与圆的三种位置关系.
探索圆的切线的性质.
教学方法
教师指导学生探索法.
教具准备
投影片三张
第一张:(记作§3.5.1A)
第二张:(记作§3.5.1B)
第三张:(记作§3.5.1C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]我们在前面学过点和圆的位置关系,请大家回忆它们的位置关系有哪些?
[生]圆是平面上到定点的距离等于定长的所有点组成的图形.即圆上的点到圆心的距离等于半径;圆的内部到圆心的距离小于半径;圆的外部到圆心的距离大于半径.因此点和圆的位置关系有三种,即点在圆上、点在圆内和点在圆外.也可以把点与圆心的距离和半径作比较,若距离大于半径在圆外,等于半径在圆上,小于半径在圆内.
[师]本节课我们将类比地学习直线和圆的位置关系.
Ⅱ.新课讲解
1.复习点到直线的距离的定义
[生]从已知点向已知直线作垂线,已知点与垂足之间的线段的长度叫做这个点到这条直线的距离.
如下图,C为直线AB外一点,从C向AB引垂线,D为垂足,则线段CD即为点C到直线AB的距离.

2.探索直线与圆的三种位置关系

回复

使用道具 举报

41#
 楼主| 发表于 2010-7-30 10:14:00 | 只看该作者

[师]直线和圆的位置关系,我们在现实生活中随处可见,只要大家注意观察,这样的例子是很多的.如大家请看课本113页,观察图中的三幅照片,地平线和太阳的位置关系怎样?作一个圆,把直尺的边缘看成一条直线,固定圆,平移直尺,直线和圆有几种位置关系?
[生]把太阳看作圆,地平线看作直线,则直线和圆有三种位置关系;把直尺的边缘看成一条直线,则直线和圆有三种位置关系.
[师]从上面的举例中,大家能否得出结论,直线和圆的位置关系有几种呢?
[生]有三种位置关系:
[师]直线和圆有三种位置关系,如下图:

它们分别是相交、相切、相离.
当直线与圆相切时(即直线和圆有唯一公共点),这条直线叫做圆的切线(tangent line).
当直线与圆有两个公共点时,叫做直线和圆相交.
当直线与圆没有公共点时,叫做直线和圆相离.
因此,从直线与圆有公共点的个数可以断定是哪一种位置关系,你能总结吗?
[生]当直线与圆有唯一公共点时,这时直线与圆相切;
当直线与圆有两个公共点时,这时直线与圆相交;
当直线与圆没有公共点时,这时直线与圆相离.
[师]能否根据点和圆的位置关系,点到圆心的距离d和半径r作比较,类似地推导出如何用点到直线的距离d和半径r之间的关系来确定三种位置关系呢?
[生]如上图中,圆心O到直线l的距离为d,圆的半径为r,当直线与圆相交时,d<r;当直线与圆相切时,d=r;当直线与圆相离时,d>r,因此可以用d与r间的大小关系断定直线与圆的位置关系.
[师]由此可知:判断直线与圆的位置关系有两种方法.一种是从直线与圆的公共点的个数来断定;一种是用d与r的大小关系来断定.
投影片(§3.5.1A)
(1)从公共点的个数来判断:
直线与圆有两个公共点时,直线与圆相交;直线与圆有唯一公共点时,直线与圆相切;直线与圆没有公共点时,直线与圆相离.
(2)从点到直线的距离d与半径r的大小关系来判断:
d<r时,直线与圆相交;
d=r时,直线与圆相切;
d>r时,直线与圆相离.
投影片(§3.5.1B)
[例1]已知Rt△ABC的斜边AB=8cm,AC=4cm.
(1)以点C为圆心作圆,当半径为多长时,AB与⊙C相切?
(2)以点C为圆心,分别以2cm和4cm的长为半径作两个圆,这两个圆与AB分别有怎样的位置关系?
分析:根据d与r间的数量关系可知:
d=r时,相切;d<r时,相交;d>r时,相离.

解:(1)如上图,过点C作AB的垂线段CD.
∵AC=4cm,AB=8cm;
∴cosA= ,
∴∠A=60°.
∴CD=ACsinA=4sin60°=2 (cm).
因此,当半径长为2 cm时,AB与⊙C相切.
(2)由(1)可知,圆心C到AB的距离d=2 cm,所以,当r=2cm时,d>r,⊙C与AB相离;
当r=4cm时,d<r,⊙C与AB相交.
3.议一议(投影片§3.5.1C)
(1)你能举出生活中直线与圆相交、相切、相离的实例吗?
(2)上图(1)中的三个图形是轴对称图形吗?如果是,你能画出它们的对称轴吗?
(3)如图(2),直线CD与⊙O相切于点A,直径AB与直线CD有怎样的位置关系?说一说你的理由.

对于(3),小颖和小亮都认为直径AB垂直于CD.你同意他们的观点吗?
[师]请大家发表自己的想法.
[生](1)把一只筷子放在碗上,把碗看作圆,筷子看作直线,这时直线与圆相交;
自行车的轮胎在地面上滚动,车轮为圆,地平线为直线,这时直线与圆相切;
杂技团中骑自行车走钢丝中的自行车车轮为圆,地平线为直线,这时直线与圆相离.
(2)图(1)中的三个图形是轴对称图形.因为沿着d所在的直线折叠,直线两旁的部分都能完全重合.对称轴是d所在的直线,即过圆心O且与直线l垂直的直线.
(3)所谓两条直线的位置关系,即为相交或平行,相交又分垂直和斜交,直线CD与⊙O相切于点A,直径AB与直线CD垂直,因为图(2)是轴对称图形,AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此∠BAC=∠BAD=90°.
[师]因为直线CD与⊙O相切于点A,直径AB与直线CD垂直,直线CD是⊙O的切线,因此有圆的切线垂直于过切点的直径.
这是圆的切线的性质,下面我们来证明这个结论.
在图(2)中,AB与CD要么垂直,要么不垂直.假设AB与CD不垂直,过点O作一条直径垂直于CD、垂足为M,则OM<OA,即圆心O到直线CD的距离小于⊙O的半径,因此CD与⊙O相交,这与已知条件“直线CD与⊙O相切”相矛盾,所以AB与CD垂直.
这种证明方法叫反证法,反证法的步骤为第一步假设结论不成立;第二步是由结论不成立推出和已知条件或定理相矛盾.第三步是肯定假设错误,故结论成立.
Ⅲ.课堂练习
随堂练习
Ⅳ.课时小结
本节课学习了如下内容:
1.直线与圆的三种位置关系.
(1)从公共点数来判断.
(2)从d与r间的数量关系来判断.
2.圆的切线的性质:圆的切线垂直于过切点的半径.
3.例题讲解.
Ⅴ.课后作业
习题3.7
Ⅵ.活动与探究
如下图,A城气象台测得台风中心在A城正西方向300千米的B处,并以每小时10 千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围是受台风影响的区域.

(1)A城是否会受到这次台风的影响?为什么?
(2)若A城受到这次台风的影响,试计算A城遭受这次台风影响的时间有多长?

回复

使用道具 举报

42#
 楼主| 发表于 2010-7-30 10:15:00 | 只看该作者

分析:因为台风影响的范围可以看成以台风中心为圆心,半径为200千米的圆,A城能否受到影响,即比较A到直线BF的距离d与半径200千米的大小.若d>200,则无影响,若d≤200,则有影响.
解:(1)过A作AC⊥BF于C.
在Rt△ABC中,∵∠CBA=30°,BA=300,
∴AC=ABsin30°=300× =150(千米).
∵AC<200,∴A城受到这次台风的影响.
(2)设BF上D、E两点到A的距离为200千米,则台风中心在线段DE上时,对A城均有影响,而在DE以外时,对A城没有影响.
∵AC=150,AD=AE=200,
∴DC= .
∴DE=2DC=100 .
∴t= =10(小时).
答:A城受影响的时间为10小时.
板书设计
§3.5.1  直线和圆的位置关系(一)
一、1.复习点到直线的距离的定义
2.探索直线与圆的三种位置关系
(1)从公共点个数来判断
(2)从点到直线的距离d与半径r间的数量关系来判断.
3.议一议
二、课堂练习
随堂练习
三、课时小结
四、课后作业









直线和圆的位置关系(2)
教学目标
(一)教学知识点
1.能判定一条直线是否为圆的切线.
2.会过圆上一点画圆的切线.
3.会作三角形的内切圆.
(二)能力训练要求
1.通过判定一条直线是否为圆的切线,训练学生的推理判断能力.
2.会过圆上一点画圆的切线,训练学生的作图能力.
(三)情感与价值观要求
经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步演绎推理能力,能有条理地、清晰地阐述自己的观点.
经历探究圆与直线的位置关系的过程,掌握图形的基础知识和基本技能,并能解决简单的问题.
教学重点
探索圆的切线的判定方法,并能运用.
作三角形内切圆的方法.
教学难点
探索圆的切线的判定方法.
教学方法
师生共同探索法.
教具准备
投影片三张
第一张:(记作§3.5.2A)
第二张:(记作§3.5.2B)
第三张:(记作§3.5.2C)
教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们学习了直线和圆的位置关系,圆的切线的性质,懂得了直线和圆有三种位置关系:相离、相切、相交.判断直线和圆属于哪一种位置关系,可以从公共点的个数和圆心到直线的距离与半径作比较两种方法进行判断,还掌握了圆的切线的性质、圆的切线垂直于过切点的直径.
由上可知,判断直线和圆相切的方法有两种,是否仅此两种呢?本节课我们就继续探索切线的判定条件.
Ⅱ.新课讲解
1.探索切线的判定条件
投影片(§3.5.2A)
如下图,AB是⊙O的直径,直线l经过点A,l与AB的夹角∠α,当l绕点A旋转时,

(1)随着∠α的变化,点O到l的距离d如何变化?直线l与⊙O的位置关系如何变化?
(2)当∠α等于多少度时,点O到l的距离d等于半径r?此时,直线l与⊙O有怎样的位置关系?为什么?
[师]大家可以先画一个圆,并画出直径AB,拿直尺当直线,让直尺绕着点A移动.观察∠α发生变化时,点O到l的距离d如何变化,然后互相交流意见.
[生](1)如上图,直线l1与AB的夹角为α,点O到l的距离为d1,d1<r,这时直线l1与⊙O的位置关系是相交;当把直线l1沿顺时针方向旋转到l位置时,∠α由锐角变为直角,点O到l的距离为d,d=r,这时直线l与⊙O的位置关系是相切;当把直线l再继续旋转到l2位置时,∠α由直角变为钝角,点O到l的距离为d2,d2<r,这时直线l与⊙O的位置关系是相离.
[师]回答得非常精彩.通过旋转可知,随着∠α由小变大,点O到l的距离d也由小变大,当∠α=90°时,d达到最大.此时d=r;之后当∠α继续增大时,d逐渐变小.第(2)题就解决了.
[生](2)当∠α=90°时,点O到l的距离d等于半径.此时,直线l与⊙O的位置关系是相切,因为从上一节课可知,当圆心O到直线l的距离d=r时,直线与⊙O相切.
[师]从上面的分析中可知,当直线l与直径之间满足什么关系时,直线l就是⊙O的切线?请大家互相交流.
[生]直线l垂直于直径AB,并经过直径的一端A点.
[师]很好.这就得出了判定圆的切线的又一种方法:经过直径的一端,并且垂直于这条直径的直线是圆的切线.
2.做一做
已知⊙O上有一点A,过A作出⊙O的切线.
分析:根据刚讨论过的圆的切线的第三个判定条件可知:经过直径的一端,并且垂直于直径的直线是圆的切线,而现在已知圆心O和圆上一点A,那么过A点的直径就可以作出来,再作直径的垂线即可,请大家自己动手.
[生]如下图.

(1)连接OA.
(2)过点A作OA的垂线l,l即为所求的切线.
3.如何作三角形的内切圆.
投影片(§3.5.2B)
如下图,从一块三角形材料中,能否剪下一个圆使其与各边都相切.

分析:假设符号条件的圆已作出,则它的圆心到三角形三边的距离相等.因此,圆心在这个三角形三个角的平分线上,半径为圆心到三边的距离.
解:(1)作∠B、∠C的平分线BE和CF,交点为I(如下图).
(2)过I作ID⊥BC,垂足为D.
(3)以I为圆心,以ID为半径作⊙I.
⊙I就是所求的圆.
[师]由例题可知,BE和CF只有一个交点I,并且I到△ABC三边的距离相等,为什么?
[生]∵I在∠B的角平分线BE上,∴ID=IM,又∵I在∠C的平分线CF上,∴ID=IN,∴ID=IM=IN.这是根据角平分线的性质定理得出的.

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-9 13:07

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表