学生经过研究可以得到:长7cm,宽1cm;长6cm,宽2cm;长5cm,宽3cm;长4cm,宽4cm(正方形)这四种长方形,其中正方形的面积最大。在研究过程中学生会渐渐地认识到:要想得到最大的面积,就要把所有的长方形一一例举出来去比较;而要想得到不同的长方形,必须在保持周长不变的情况下改变长方形的长和宽,由于长逐渐地减小,在周长不变的情况下,宽必须跟随着不断地增大。这样就把“静态”的学习变成了“动态”的研究,而这种由“静”到“动”本身就是函数的本质。因此说,是函数思想使学生学习的过程“动”了起来,使学生的学习“主动”起来,这样也更有利于渗透函数域的概念和极值的概念。
另外,我们应该认识到在小学的“空间与图形“领域的教学中,许多公式都是一种函数关系,也可以渗透函数思想。
3.利用数量关系在解决实际问题中渗透函数思想
学生在小学阶段学习和掌握了许多的数量关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系……其实当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。
以简单的解决问题来说,我们可以把封闭的题目改编成开放的题,如让学生根据所给的两个条件补一个问题,或给一个条件和问题,让学生补上另一个条件。例如,学校有120名学生排队做操,,可以站几排?这看起来是很简单的一点儿变化,当把学生的各种补充条件汇集到一起时,学生就会认识到:可以站几排是随着每排人数的变化而变化着的;而每排的人数也会有一定限制,至少不会少于1人,至多不会超过120人。这个范围所蕴含的思想就是函数中的定义域和值域。我们看到这种开放不是简单形式上的开放,而是建立在函数思想上的有目的的开放。
4.在“统计与概率”的教学中渗透函数思想
“统计与概率”的内容往往通过表格、图像来描述数据,但大多数教师认为其中不存在函数关系,只重视到了其对培养学生统计观念的作用而忽视了对函数思想的渗透。
下面是一位老师设计的“测量一个水龙头不同时间内滴水量”的活动。
环节一:边测量边填表。
时间(分)
| 10
| 20
| 30
| 40
| 50
| 60
| …
| 滴水量(毫升)
|
|
|
|
|
|
|
| 环节二:根据实验数据再制成折线统计图。
环节三:结果分析:(1)说一说从图中你发现了什么;(2)描述一下滴水量与时间之间的关系;(3)估计3小时将浪费多少毫升水。
……
这个活动中, 学生不仅经历了统计的全过程,而且亲历了滴水量的变化随着时间的变化而变化的过程,初步体验了函数的味道。与此同时,还对学生进行了节水的德育教育,可见其功能是多方面的。
以上是从《课标》规定的四个教学领域谈及的可渗透函数思想的教学点。然而众多的数学思想方法也是有联系的,函数思想与其他一些思想方法紧密相连。
5.在与其他的数学思想方法的结合、相互勾连中渗透函数思想
(1)结合数形结合的思想方法。解析几何为几何学的研究提供了新的方法,使许多几何问题变得简单易解,它使几何从定性研究阶段发展到定量分析阶段,使人们对形的认识由静态发展到动态,这才是“数形结合”思想的本质所在[7]。数形结合的思想方法是将抽象的数学语言与直观的图像结合起来,它可以使代数问题几何化、几何问题代数化。而函数思想侧重于研究代数问题,有时将函数思想与数形结合的思想结合,可以使抽象的函数关系更具体、直观,便于学生理解。
例如,在教学“正比例”时,教师不仅利用统计表(表5)来研究数量之间所体现的规律,还利用信息技术手段将函数图像形成的过程展示出来,借助图像(图1)来研究正比例函数。
图1
单价与总价
在函数图像的形成过程中,学生不仅能感受一一对应、连续性,而且将抽象的数据借助具体的图像展现出来,在动态的过程中形成了对函数直观的认识,更好地帮助学生把握数量间的变化规律,使学生由具体形象的静态认识提高到在运动、变化中去概括,形成正确的表象信息。这样有利于学生对正比例意义的理解。
函数思想与数形结合思想的结合,使得抽象的学习内容更直观,能提高学习效果。因此,在教师的教学中应当充分利用这一点。
(2)结合极限的思想方法。极限的思想方法是用联系变动的观点,把所考察的对象看作是某对象在无限变化过程中变化结果的思想方法。有时这两个对象就是具备函数关系的两个变量。
例如,在“圆的周长”的教学中,教师为了让学生认识圆周率而介绍人类探索的过程,而刘徽的“割圆术”是不能不提的。用圆的内接正多边形的周长来近似地代替圆的周长,当圆的内接正多边形的边数逐渐增多时,其周长就越来越接近圆的周长,正所谓“割之弥细,所失弥少。割之又割,以至于不可割,则与圆周合体而无所失矣” [8]。具体如图2。
图2
圆的内接正多边形 在这个变化过程中,圆的内接正多边形的边数与其周长就是两种相依变化的量,具备函数关系。同时,圆的内接正多边形的周长的极限就是圆的周长,又体现了极限的思想。所以在这个例子中,函数思想与极限思想是密不可分的。
(3)结合对应的思想方法。函数思想往往与对应的思想密不可分,这是函数的本质所决定的。
例如,在人教版六年级上册“位置”的教学中,以往的教学目标只设定在学生能够用数对表示出整数列与行交叉处点的位置,实际上可以依次选择:在整数列但不在整数行的点、在整数行却不在整数列的点和既不在整数列又不在整数行的点这几种形式,使学生认识到无论点在哪里,都可以用数对表示点的位置。当把点移至图外时,学生自然能利用知识的迁移,认识到 “图外点”也能用数对表示位置。在为初中的直角坐标系的学习做好铺垫的同时,突出了点与数对的一一对应的关系,渗透了对应的思想。有的教师还在此基础上设计了如下的练习。
①用数对表示三角形ABC各个顶点的位置。
②画出三角形ABC向右平移5个单位后的图形A′B′C′。
③用数对表示所得图形A′B′C′各个顶点的位置。
练习内容将数对的学习与平移的知识相结合,通过图形平移前后数对的变化规律的研究渗透了函数的思想,使得教学立意更深更高,提高了教学品味。
函数是研究变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。使小学生经历一些函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,有助于中小学数学教学的衔接。本次研究基于对当前小学数学教师对函数认识的现状的调查所暴露出的一些问题,试图通过澄清函数的概念、什么是函数思想后点明在小学数学教学中应如何渗透函数思想,帮助教师更好地服务于教学。
|