教学环节
| 教学内容
| 学生活动
| 设计意图及教师组织
| 媒体使用
|
创设问题情景
| 让学生观察多媒体彩图,如果某个小鸭在坐标系内的位置是(-2,-3),他向右游了5个单位,则它的坐标变成了多少?如果它向下游4个单位长度,它的坐标又是多少呢?再将它向左或向下游4个单位长度,它们的坐标又有什么变化?观察它们的变化,你能从中发现什么规律吗?
| 学生用事先准备好的坐标纸,自己动手画图,并通过交流合作得出结论。
| 通过情景吸引学生,激发学生的学习兴趣,学生自己动手能更好地让学生复习坐标与平移知识,为新知识提供基础。
| 用多媒体课件展示运动过程及小鸭的坐标情况,使学生对此有深刻印象
|
| 1、探索点坐标变化与点平移的关系
在平面直角坐标系内,点A(2,3)向左平移4个单位长度,则得到的坐标是什么?向上平移4个单位长度呢?
反过来,点A的坐标由(-2,3)平移到(0,3),则是怎么平移的?如果平移到(-2,0)呢?
| 师生总结:在平面直角坐标系内,点(X,Y)向右或(向左)平移a个单位长度,可以得到对应点(X+a,Y)或(X-a,Y);将点(X,Y)向上或(向下)平移b个单位长度,可以得到对应点(X,Y+b)或(X,Y-b)。反过来也成立。
| 学生动手实践,利用多种感官全方位参与探究知识的过程,给学生创设充分表现自己的时空,引导学生去探索、发现、归纳。教师要关注学生的探究投入程度。鼓励学生大胆发表自己的见解,并用课件验证结果。
| 用课件演示,并请学生在课件上答题,
|
2、探索图形各个点坐标变化与图形平移的关系
出示例题:三角形三个顶点的坐标分别是A(4,3),B(3,1),C(1,2)。
(1)、将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到A1、B1、C1,依次连接A1、B1、C1各点,所得三角形与原三角形的形状、大小和位置上有什么关系?
(2)、将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到A2、B2、C2,依次连接A2、B2、C2各点,所得三角形与原三角形的形状、大小和位置上有什么关系?
思考:(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”改为“横坐标都加3”“纵坐标都加2”,分别能得到什么结论?画出所得图形。
(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出所得图形。
| 学生用准备好的坐标纸按要求动手作图,利用图形直观地解决问题。
| 学生的独立探究是学生习得的基础,通过学生动手探索,利于学生对知识的理解与内化。教师在这一过程中要关注学生的实践能力,及时辅导学习有困难的学生,并最大限度地利用学有余力的学生来帮助同伴。
| 用课件演示运动的过程与结果
|
拓展延伸,力求创新
| 1、将点P(-4,3),向X轴负方向平移2个单位长度得到点P1_________,再将点P1沿Y轴负方向平移2个单位长度得到点P2____________________.
2、有相距5个单位长度的两点A(-3,m),B(n,4),AB∥X轴则m=________ n=___________.
3、平面直角坐标系中,三角形ABC三个顶点的纵坐标都减去2,横坐标不变,则得到的新三角形与原三角形相比向______平移____________单位。
4、在平面直角坐标系中坐标为(0,0),(5,4),(3,0),(4,-2),(0,0)的点用线段依次连接而成的图形,将各点坐标如下变化。
(1)纵坐标不变,横坐标分别加3,再将所有的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
(2)、横坐标不变,纵坐标减4,再将所有的点用线段依次连接起来,所得的图案与原来的图案相比有什么变化?
|
| 及时复习强化,并为部分学有余力的学生拓展学习空间,为他们的发展提供平台。教师要及时指导,并强调要通过动手作图直观地寻求结果。教师再用课件演示来进行解答
| 准备好课件为学生进行演示对照。
|
知识整小结理,形成系统
| 学完本节课你有什么收获,谈谈自己的体会,最后师生共同总结归纳。
| 请学生个别发言,对知识做出归纳,相互补充。
| 通过总结,培养学生归纳、概括能力,有助于学生清理知识的脉络,使新旧知识形成体系,教师做为组织者与引导者
|
|
布置作业,巩固提高
| 必做题:课本58页 第1题、59页第3、4题,60页6、7题
选做题:课本61页 第9题
| 学有余力的学生可当堂做题,然后利用课件来对照。
| 作业分为必做题与选做题,目的是为了兼顾不同层次学生的学习需要,同时也让学生能及时巩固本节课的知识与技能。
| 使用课件演示,可直接解答。
|