|
读书笔记-小学数学与数学思想方法
第六章 小学数学教材中的数学思想方法案例解读
数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。
第一节 一年级上册案例解读
新教材注重贯彻四基目标,其中数学思想的编排主要体现在两个方面:一是在数与代数、图形与几何、统计与概率、综合与实践这四个领域结合各部分知识体现各种数学思想;二是每册教材单独设置“数学广角”单元,利用操作和直观等手段呈现重要的数学思想。
一、抽象思想和符号化思想
(1) 从具体的情境和直观图中抽象出数学符号0~9,关系符号“=”“<”“>”运算符号“+”“-”等;并理解这些符号的含义。教材编排,让学生从具体到抽象,经历了符号化的过程,感受符号的简洁。同时这里还呈现了简单的象形统计图,让学生感受统计思想和一一对应思想。
(2) 结合生活经验、数小棒、计数器等直观操作手段,经历十进制计数原理的抽象过程。
抽象思想存在于数学学习的全过程,虽然一年级的数学知识看起来很简单,但实际上也是充满了抽象。无论是数的认识还是计算,都离不开抽象的十进制计数原理;时间作为表示物质运动的始终过程或过程中的一点,充满了抽象;几何图形虽然比较直观,但从物体到图形也是一个抽象的过程。我们在教学十进制计数原理,10和9相比已有本质不同。
二、分类思想
分类思想的教学要抓住全面、有序地思考等特点,在低年级也可以渗透,具体内容和教学目标如下:
(1) 结合认识物体,让学生感受分类思想。给各种形状的物体起个名称,实际上就是按照形状分类。
(2) 结合数的组成,让学生感受分类思想的优势、有条理地思考的优越性。
三、归纳法
整理学过的20以内的进位加法算式,观察算式的特点,归纳出其中的规律。再根据发现规律就能够比较容易填写空格,有利于培养推理能力。
四、演绎推理思想
数学家张景中院士认为计算和推理是相通的,计算中有方法,方法里就体现了推理;推理是抽象的计算,计算时具体的推理。让学生感受推理思想,同时能够灵活地思考。推理本身具有逻辑性,但是要灵活地运用推理。
五、数学结合思想
(1) 体会“形”的直观性。各种实物或图形作为各种直观工具帮助学生理解和掌握知识、解决问题,如借助直线认识数的顺序并计算,认识数的时候用小棒摆三角形、正方形、五边形、六边形等。
(2) 了解可以用数来描述几何图形。各种图形的认识,课增加用数的量化来描述形。
六、函数思想
在加法算式中,一个加数不变,和随着另一个加数的变化而变化,在减法算式中,被减数不变,差随着减数的变化而变化,都可以渗透函数的思想。
思考: 数学知识是数学思想方法的载体,思想方法是数学知识的进一步抽象概括,因而数学思想方法有一个特点,它并不像数学知识技能那样显而易见,往往是隐形的。我们教师在备课时,心里就要明确这些数学思想,那么在教学中才能有所体现。这也就需要我们老师加强解读文本的功底,而不在只是为教数学知识而教数学知识。
|
|