|
课 堂 教 学 反 思
在新课程的背景下,我的数学课堂总要贯彻下面的教学理念:
一、该记的记,该背的背,不要以为理解了就行
有同学认为,数学不像英语、历史、地理,要背单词、背年代、背后名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比方规定 (a≠0) 等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比方大家熟悉的线段、角、角平分线、三角形的有关概念,有的同学背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,假如背不出这些,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些概念,特别是八年级即将学的全等三角形,其中相当重要的角平分线定理就是由这些概念推出来的。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比如,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
二、几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比方等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而七年级则比较系统地学习解一元一次方程和二元一次方程组,并总结出解一元一次方程的五个步骤和二元一次方程组的解法。假如学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。八、九年级我们还将学习一次函数和其图象,正比例函数,反比例函数等,到高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维方法几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,实际中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。 所谓的“方程”思想就是对于数学问题,特别是实际当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支--代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在七年级,建立平面直角坐标系后,八年级研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比方我们将一支铅笔、一本书、一栋房子对应一个笼统的数“1”,将两只眼睛、一对耳环、双胞胎对应一个笼统的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比方我们在计算或化简中,将对应公式的左边,x对应 a , y对应b ,再利用公式的右边直接得出原式的结果。这就是运用“对应”的思想和方法来解题。七年级我们已经看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,八年级还有函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。
4、“转化”的思想
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。比方,我们学校要扩大学校,需要向镇镇府征地。镇府给了一块形状不规则的地,如何丈量它的面积呢?首先,使用小平板仪(有条件的话使用水准仪、经纬仪)依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。“转化”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“胜利转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。
三、自学能力的培养
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自身对数学的一种悟性。曾经听一位物理老师说:我是教物理的,同学物理学得好,不是我教出来的,而是他们自身悟出来的。当然,这位老师是谦虚的,但他说明了一个道理,同学不能被动地学习,而应主动地学习。一个班里几十个同学,同一个老师教,差别那么大,这就是学习主动性问题了。
|
|