绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 6103|回复: 1
打印 上一主题 下一主题

校内公开课《方程的根与函数的零点》教学设计

[复制链接]
跳转到指定楼层
楼主
发表于 2016-9-13 10:13:48 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
校内公开课《方程的根与函数的零点》教学设计
海口海港学校   黄于芮
一、教学目标
(1)知识与技能:
结合二次函数的图象,判断一元二次方程根的存在性及个数,从而了解函数的零点与方程的根的联系.理解并会用零点存在性定理。
(2)过程与方法:
培养学生观察 、思考、分析、猜想,验证的能力,并从中体验从特殊到一般及函数与方程思想。
(3)情感态度与价值观:
在引导学生通过自主探究,发现问题,解决问题的过程中,激发学生学习热情和求知欲,体现学生的主体地位,提高学习数学的兴趣。
二、教学重难点
重点:体会函数零点与方程根之间的联系,掌握零点的概念
难点:函数零点与方程根之间的联系
三、教法学法
以问题为载体,学生活动为主线,以多媒体辅助教学为手段利用探究式教学法,构建学生自主探究、合作交流的平台
四、教学过程
1.创设问题情境,引入新课
问题1  求下列方程的根
(1)(2)(3)
师生互动:问题1让学生通过自主解前3小题,复习一元二次方程根三种情形。

问题2  填写下表,探究一元二次方程的根与相应二次函数与x轴的交点的关系?

师生互动:让学生自主完成表格,观察并总结数学规律

问题3 完成表格,并观察一元二次方程的根与相应二函数图象与x轴交点的关系?
师生互动:让学生通过探究,归纳概括所发现结论,并能用相对准确的数学语言表达。
2.建构函数零点概念
函数零点的概念:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点。
思考:
(1)零点是一个点吗?
(2)零点跟方程的根的关系?
(3)请你说出问题2中3个函数的零点及个数?(投影问题2的表格)
师生互动:教师逐一给出3个问题,让学生思考回答,教师对回答正确学生给予表扬,不正确学生给予提示与鼓励。
3.知识的延伸,得出等价关系
(1)方程f(x)=0有实数根(2)函数y=f(x)有零点(3)函数y=f(x)的图象与x轴有交点
师生互动:分析等价性:(1)、(2)两个命题的等价是从数的角度来刻画,第(3)个命题是从形的角度来刻画。基于此,我们就可用函数的观点看待方程,方程的根即函数的零点,可以把解方程的问题转化为函数图像与x轴的交点问题。
4.练习巩固
练习1:函数             的零点是(   )
A. (-2,0)和(3,0)     B. -2     C. 3     D. -2和3

练习2:求下列函数的零点。

练习3:根据函数图象判断下列函数有几个零点?

5、归纳小结
请你谈谈本节课的收获?
(1)、函数零点的概念
(2)、三个等价关系
师生互动:让学生自己对本课进行小结,教师对学生的小结给予肯定并补充完善。
布置作业,学以致用
必做题:
1、求函数:y=-x2+6x+7的零点
2、方程的解所在的区间是                (    )
    A.(0,1)      B.(1,2)      C.(2,3)      D.(3,4)


分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2016-9-13 10:13:51 | 只看该作者
五、反思与体会
现代教育心理学的研究认为,有效的概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:
(1)在学生已有知识结构和新概念间寻找“最近发展区”
(2)设法走出“概念一带而过,演习铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。因此教学设计过程:逐层铺垫,降低难度由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形,恰当地使用多媒体和计算器,让学生直观形象地理解问题,了解知识的形成过程。
    采用“启发—探究—讨论”教学模式精心设置一个个问题链,给每个学生提供思考、创造、表现和成功的机会.
建构主义认为:知识不是被动接受,而是认知主体积极主动建构的。本节的教学设计正是在这种教学理念的指导下,让学生经历“创设问题情境——建构概念——探究定理——注重反思——拓展应用”的活动过程,体验参与数学知识的发生、发展过程,提高学习数学的兴趣,成为积极主动的建构者。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-23 12:43

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表