|
简便运算——这是小学数学计算题中最常见的一种。从同学一开始接触计算就从各个不同的角度渗透了简便运算的思想,到了四年级在计算题中简便运算则做为独立的题型正式出现,它是计算题中最为灵活的一种,能使同学思维的灵活性得到充沛锻炼,对提高同学的计算能力将起到非常大的作用。
何谓简便运算,这是一个非常简单的问题,但要正确地理解它,决不能为了追求简便的形式而进行简便运算。对此,我的理解是:简便运算应该是灵活、正确、合理地运用各种定义、定理、定律、性质、法则等等,改变原有的运算顺序进行计算,通过简便运算要大幅度地提高计算速度和正确率,使复杂的计算变得简单。也就是说:变难为易,变繁为简,变慢为快。最重要的是灵活、合理地运用各种定义、定理、定律、性质、法则。尤其要强调“灵活”、“合理”。下面就我在教学中遇到的情况,谈谈我的看法。
1、“4.9+0.1-4.9+0.1”这是小学数学第八册练习二十七第二题中的一道非常简单的常见简便运算题。当我给同学安排了这道题后,我以为同学会毫不犹豫地使用加法交换率和结合率,顺利完成此题,但是当我批改同学的作业时,却发现了以下三种情况:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
显然第③种简算是错误的,因为它违反了四则运算顺序,其简算结果绝对不等于原题的结果。问题就出在第①种和第②种解法上,第①种解法的简算过程非常规范,无懈可击;第②种解法看上去好象不太规范,但是也有道理。于是,我组织同学进行了讨论,结果同学分成了截然相反的两派。一方认为:第①种解法绝对正确,而第②种解法不规范,没有明确标明简便运算的过程,所以不能算对。另一方认为:第①种解法非常规范,肯定正确无疑,但是,第②种解法也是对的,因为按运算顺序从左往右,先算4.9-4.9,实际上就得0,其实就不用算,直接计算0.1+0.1就行了,简算过程其实也很明确。
面对同学的不同观点,我进行了总结。我首先肯定了同学的学习精神,然后,论述了我的观点:第①种解法绝对正确,毫无疑问,但是第②种解法也有道理,也不失为一种合理的简便运算,因为它们都抓住了这道题的关键所在,二者没有实质的区别。简便运算不能仅仅停留在追求形式上,更应该抓住实质上的简便,正如那些同学所说4.9-4.9不用算就知道得0,只需要计算0.1+0.1就行了,既然不加括号同样也能达到同样的效果,就没有必要强调必需加上括号,简便运算最终要得就是“简便”的效果。
2、“88×25”这是一道关于乘法的简便运算题。当时刚学完乘法分配率,练习十四第三题中有这样一道题“(80+8)×25”,同学完成后,我随即将该题改为“88×25”让同学考虑,第二天同学汇报了两种答案:
①、88×25=80×25+8×25=2000+200=2200;
②、88×25=11×(8×25)=11×200=2200。
然后,我请同学分别介绍了他们的想法,他们的想法非常好,他们是这样说的:第①种是把88分成80+8,再利用乘法分配率,让他们分别同25相乘;第②种则将88分成8×11,然后利用乘法交换率和结合率,先把8与25相乘,最后在乘11。
听完同学的介绍后,我进行了总结,首先肯定了两种答案的正确,然后对两种答案进行了分析:两种答案的一起之处在于都发现了8与25相乘非常简便,于是想方设法对88进行分解,因此都掌握住了这道题的关键,所以都是正确的;两种解法的区别是,分解的方法不同,第①种解法是用加法进行的分解,所以使用的是乘法分配率,第②种解法用乘法进行的分解,所以使用的是乘法交换率和结合率。方法不同却有异曲同工之处。
最后,再次强调:简便运算的思路会有很多,但是,只要掌握“简便”这个解题关键,正确、合理地使用定律、法则,就应该是正确的。
3、“5436÷18”这是第八册练习二十七第五题中的一道关于除法的简便运算题。正是因为题目的要求是“下面各题,怎样简便就怎样算”,所以同学的答案可谓是多种多样,我汇总了一下,主要有以下四种:
①、直接算就非常简便;
②、5436÷18=5400÷18+36÷18=300+2=302;
③、5436÷18=5436÷9÷2=604÷2=302;
④、5436÷18=5436÷6÷3=906÷3=302。
仔细分析,除了第①种解法不符合简便运算规则外,其余三种解法都有道理,第②种解法胜利地把乘法分配率运用到了除法上;第③种和第④种解法则将除数18胜利分解成两个一位因数的积,然后运用“A÷(B×C)=A÷B÷C”这个性质进行连除,把除数是两位数的除法计算,变成可以口算的除数是一位数的计算,从而使计算简便。所以,我在课堂上把这四种解法全部公布在黑板上,并引导同学逐一进行了分析,使同学对简便运算的实质有了进一步地理解。
4、许多同学都头疼这样的题“计算下面各题,能简算的要简算”,的确这种题确有难度,因为,它不只要求同学能明确运算顺序,正确计算,而且还要求同学有一定的观察能力,甚至要有一些直觉,能够进行合理的分析,找出其中能够进行简便运算的局部,并合理地进行简便运算。要想顺利能完成这种题,同学必需对简算的理解要透,要掌握简算的实质,既不能漏了哪处可以简算的题,也不能把不能简算的题错误地进行了简算。
教学过程中我是这样处置的:首先,我并没有直接要求同学做这样的题,而是做了大量的直接简算的题,列举了各种不同思路,就象上面那样,通过练习,引导同学总结出一些常见的简算数对象“25和4”、“125和8”、“5与任何偶数”以和其他的可以凑整的数,同时使同学对简算有了比较深刻的理解,甚至有些同学有了对简便运算的直觉。然后,再重温了混合运算的运算顺序,使同学对运算顺序进一步加深认识,使同学基本上能做到不假思索就能按正常顺序完成。最后,再进行此类题。这时,同学已经有了简算的基础,对简算发生了直觉,同时又牢固地掌握了正常情况下的混合运算,就已经不再认为这种题很难了,有些同学甚至认为这种题更好算,不知不觉地把这种方法运用到了其他的地方比方其他计算、应用题的计算、实际生活等等,从而使同学的计算能力大幅度提高。
通过这些练习,不只使同学学会了单纯的简便运算,更重要的是,使同学初步理解了学以致用的道理,真正理解了书本上的知识必需运用到实际当中去的道理。
简便运算是一种高级的混合运算,是混合运算的技巧,学好了简便运算,不只能提高计算能力、计算速度,更重要的是,使学到的定义、定理、定律、法则、性质、规律等达到融会贯通的境界,是计算题中最能锻炼同学思维能力、开拓同学思路的一种题型,所以,在计算题教学中必需重视简便运算,注重简便运算灵活的思路的学习,正确理解简便运算的涵义,合理地进行简便运算,使同学的思维能力得到提高。
|
|