|
沙发
楼主 |
发表于 2015-6-26 14:02:44
|
只看该作者
(三)抓住图形与实物的关系
小学生的思维正处于由直观、形象思维向抽象、逻辑思维的过渡阶段,他们对几何图形的认识主要依赖于观察、实验和必要的动手操作,再通过心理活动的内化去获得表象,掌握几何图形的特征,形成空间观念。
几何初步知识的教学目的是使学生对平面图形中的一些基本概念有比较清楚的认识,从形的方面加深对周围事物的认识,培养和发展学生的空间观念和思维能力,同时也为以后学习奠定基础。因此教学过程中要注意让学生动手画图,培养他们识图的能力,以促进他们对几何图形概念的掌握,形成正确的表象。
三、合理创设情境,在应用中提高
“让学生在现实情境中体验和理解数学”是新《数学课程标准》提出的教学建议。数学的知识、思想和方法,必须由学生在现实的数学实践活动中理解和掌握,而不是单纯地依赖教师的讲解去获得。教学中,把问题情境活动化,就是让学生投身到问题情境中去,使学生在口说、手做、耳听、脑想的过程中,学习知识,增长智慧,提高能力。这有利于保证学生在教学中的主体地位,对于促进学生从动作思维向具体的形象思维过渡也是十分有利的。因此教师要创造性地设置问题情境,激发学生搭建空间想象的舞台,开展再创造活动。学生生活经验少,老师教学时就要精心设计,为学生创设情境,让学生自己去体验、去感悟。通过创设不同的情境,将新、旧知识点有机相联,引导学生主动探索解决问题的方法,进而再抽象出具体的题目进行计算练习。虽然这样会花费的时间和精力较大,但比老
四、渗透转化思想,学会用已有知识解决新问题
数学教学活动要以学生的发展为本,要把学生的个人知识、直接经验和现实世界作为数学教学的重要资源。教师应该善于从学生的生活经验和知识经验出发,根据学生的年龄特点和心理发展规律,挖掘丰富多彩的、学生乐于接触的、有价值的数学题材。学生的学习起点分为逻辑起点与现实起点,对教材的知识结构进行重组和改造,进行二度开发,使教学更有生机,更贴近学生的生活,更适应学生的学习。
几何初步知识间的内在联系非常密切,沟通几何形体知识间的内在联系,可以使学生更加深刻地认识各种形体的本质特征,弄清概念间的联系和区别,发展空间观念。在教学圆柱侧面积的推导,学生沿圆柱侧面展开,学生就发现圆柱侧面可以看成是一个长方形(或平行四边形),长方形的长(或平行四边形的底)可以看成圆柱底面周长,宽(或高)是圆柱的高,求圆柱的侧面积就是求这个长方形(或平行四边形)的面积。利用学过的旧知识,引导学生抓住图形之间的“联系”,利用“转化”的数学方法,根据图形运动的特点,自己去发现知识间的变化规律,自主地把侧面积与长方形联系起来,推导面积。通过联系和比较,深刻地揭示了图形之间的本质特征与内在联系,使学生在运动、变化中认识到事物的规律性和相对性,构建起比较完整的空间知识网络,促进了学生空间观念的发展。学生在实践、推导的过程中,充分利用了原有的熟悉的知识,就不会感到难,不会觉得陌生。利用了学生的生活经验,学生就觉得数学变容易了。要将数学变容易些,关键是要利用学生熟悉的具体的东西来讲数学,用转化思想来学数学。
五、引导学生归纳整理知识,强化知识间的系统化
高年级学生应具有一定的归纳整理的能力,这种归纳整理的能力包括知识上的整理和学习方法的整理。在进行知识整理的时候,我们引导学生想一想要认识一个物体需要分哪几步?从而概括出进行整理知识时要从以下几步来完成:首先要先了解物体的特征,其次由每个特征引出的相关公式,然后知道每个公式的具体运用方式,最后还要了解它与其它相关知识的联系与区别,由它还能引出哪些知识。在进行知识整理的同时,把所用的学习方法也整理出来,并且提出学习中的注意事项。通过这两方面的整理,学生不仅全面掌握了所学知识,而且明白了应该用什么样的学习方法去学习,逻辑概括能力随之提高。
如 “圆柱、圆锥知识”整理时,按照图形的特征、二者之间的联系与区别、引申出的问题等,采用自己喜欢的方式进行整理。有的画出了树形图,有的采用了图表的形式,还有的用文字表达的形式等,形式多种多样,在整理的过程中,学生的思维得到了有效训练。头脑里的思路会更加清晰,知识间的联系也就更加透彻,空间观念进一步形成。学生们的学习兴趣更加浓厚了,学习能力在这样的活动中逐步得到提高。经过系列化教学,学生头脑中逐步清晰地建立起知识的网络结构,形成一定的空间观念。
总之,对于学生生活经验少,不能有效利用已有经验进行学习的内容,老师就要精心设计教学过程,为学生搭建学习的平台,有效调动学生的学习积极性,调动各种感官有效学习。通过教学实践证明,让学生通过观察、测量、动手操作等各个教学环节的实践活动,使在教学学生认识几何的初步知识方面,能更加有效地发挥学生空间想象能力,能更有效的发展学生的空间观念。 |
|