三、解答 1.根据图示信息回答问题。 (1)如果用天平称,至少称几次可以保证找出被吃掉5个的那一筐?请写出主要过程。 (2)如果天平两边各放5筐,称一次有可能称出来吗? 考查目的:对找次品的方法的掌握。 答案:(1)根据题意,可把11个苹果分成(4,4,3)三组,先称量(4,4)两组。若天平平衡,则次品在未取的那份中,在未取的3筐中找出轻的就是次品;若天平不平衡,把轻的一组分成(2,2)两组称量,找出较轻的一组继续分成(1,1)称量,从而找出次品。 答:如果用天平称,至少称3次可以保证找出被吃掉5个的那一筐。 (2)答:如果天平两边各放5筐,称一次有可能称出来。 解析:根据题意可知,被吃掉5个的那筐苹果一定比其他筐的重量要轻。教师应引导学生进行合理分组,从而用尽可能少的次数找出次品。 2.1箱牛奶有12袋,其中11袋质量相同,另1袋质量不足,如果用天平来称,至少称几次能保证找出这袋牛奶? 考查目的:运用找次品的知识解决实际问题。 答案:把12袋牛奶分成(4,4,4)三组,任选两组称量。若天平平衡,则次品在未取的那组中,把未取的4袋分成(2,2)两组称量,找出轻的一组分成(1,1)称量,从而找出次品;若天平不平衡,找出轻的一组分成(2,2)两组称量,再找出轻的一组分成(1,1)称量,从而找出次品。 答:至少称3次能保证找出这袋牛奶。 解析:根据题意可知,把12袋牛奶平均分为3份可用尽可能少的次数找出次品。教师应引导学生进行分析与合理分组,利用天平平衡原理,用最少的次数找出次品。 3.爸爸买了5个冰淇淋,其中4个都是150克,另外1个有155克。用天平称,至少称几次一定能找出重155克的那个冰淇淋? 考查目的:主要考查依据天平平衡原理解决找次品问题的能力。 答案:首先从5个冰淇淋里任选4个,平均分成2份,分别放在天平的两端,若天平平衡,则未取的冰淇淋就是155克的;若天平不平衡,把在天平重的一端的两个冰淇淋分别放在天平两端,比较重的冰淇淋就是155克的。 答:至少称2次一定能找出重155克的冰淇淋。 解析:根据题意,可把其中4个分成两组(2,2)分别放在天平两端,若平衡,则未取的就是质量稍重的;若不平衡,可以再进行合理分组,从而判断出次品。 4.有15袋花生,其中有一袋比其他的都要轻。问: (1)至少称几次能找出轻的那袋? (2)称一次有可能找出轻的那一袋吗?为什么? 考查目的:主要考查依据天平平衡原理解决实际问题的能力。 答案:(1)首先把15袋花生平均分成三份,即(5,5,5)分组,任取两份分别放在天平两端。若天平平衡,则较轻的那袋就在未取的5袋中;若天平不平衡,从天平翘起的一端的5袋花生中任取4袋,平均分成两份,分别放在天平两端。若天平平衡,则较轻的那袋就是未取的;若天平不平衡,把天平翘起的一端的2袋花生分别放在天平两端,翘起的一端所放的就是较轻的那袋。 答:至少称3次能找出轻的那袋。 (2)答:称一次有可能找出轻的那一袋。从15袋花生中任取14袋,平均分成两份,每份7袋,分别放在天平两端。若天平平衡,则未取的那袋就是较轻的。 解析:根据题意可把15袋花生分成三组(5,5,5),选取其中两组用天平称量。若平衡,则较轻的那袋就在未取的5袋中;若不平衡,教师应引导学生找出轻的一组继续进行合理分组,并用天平称量来判断,由此可知至少3次能找出轻的那一袋。第(2)题从15袋中任取14袋分成两组(7,7),用天平称量。若平衡,则未取的那袋就是轻的,故称一次有可能找出轻的那一袋。 5.一箱糖果里有10袋,其中9袋质量相同,另有一袋质量不足,要轻一些,完成下图并分析,如果用天平至少称几次能保证找出质量不足的那袋糖果? 考查目的:用天平平衡的原理解决找次品的问题的能力。 答案:如下图所示。 答:用天平至少称3次能保证找出质量不足的那袋糖果。 解析:解答时把10分成两组(5,5),分别放在天平两端,找出轻的一组,再把轻的一组分成三组(2,2,1),把2袋一组的分别放在天平两端称量。若天平平衡,则剩下的一袋就是质量不足的糖果;若天平不平衡,可用图示方法继续给轻的一组分组,并用天平判断出哪一袋是质量不足的糖果。
|