|
部分预览 《3.5 利用三角形全等测距离》习题
1.如图所示,要测量河两岸相对的两点A,B的距离,因无法直接量出A,B两点的距离,请你设计一种方案,求出A,B的距离,并说明理由.
2.为在池塘两侧的A,B两处架桥,要想测量A,B两点的距离,有以下两种方法:
(1)如图所示,找一处看得见A,B的点P,连接AP并延长到D,使PD=PA,连接BP并延长到C,使PC=PB.测得CD=35m,就确定了AB也是35m,说明其中的理由;
(2)如图所示,也可先过B点作AB的垂线BF,再在BF上取C,D两点,使BC=CD.接着过点D作BD的垂线DE交AC的延线长于E,则测出DE的长即为A,B的距离.你认为这种方案是否切实可行,请说出你的理由.作BD⊥AB,ED⊥BF的目的是什么?若满足∠ABD=∠BDE≠90°,此方案是否仍然可行?为什么?
3.如图5-71所示,小王想测量小口瓶下半部的内径,他把两根长度相等的钢条AA′,BB′的中点连在一起,A,B两点可活动,使M,N卡在瓶口的内壁上,A′,B′卡在小口瓶下半部的瓶壁上,然后量出AB的长度,就可量出小口瓶下半部的内径,请说明理由.
答案:
1.在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.
2.(1)由△APB≌△DPC,所以CD=AB.
(2)由△ACB≌△ECD得DE=AB.目的是使DE∥AB,可行.
3.因为△A′OB′≌△AOB,所以AB=A′B′.
|
|