|
(2)测 量
第1课时 平面图形的周长和面积
课前准备
教具准备 PPT课件
教学过程
⊙问题导入
什么是平面图形的周长?什么是平面图形的面积?
预设
生1:围成一个图形的所有边长的总和叫做这个图形的周长。
生2:物体的表面或围成的平面图形的大小叫做这个图形的面积。
这节课我们就来复习平面图形的周长和面积的相关知识。(板书课题)
⊙回顾与整理
周长和面积的计算公式。
(1)我们学过哪些图形的周长和面积的计算公式?
长方形、正方形、平行四边形、三角形、梯形和圆的周长和面积的计算公式。
结合学生的回答,有序地画出相关的平面图形,为构建知识网络做准备。
(2)如何计算这些平面图形的周长和面积?各面积公式之间有什么联系?
①长方形的周长=(长+宽)×2,用字母表示为C=2(a+b)。
②长方形的面积=长×宽,用字母表示为S=ab。
③正方形是特殊的长方形,正方形的周长=边长×4,用字母表示为C=4a;面积=边长×边长,用字母表示为S=a•a=a2。
④平行四边形的面积是根据长方形的面积推导的,把平行四边形经过切割、平移就能转化成长方形,所以平行四边形的面积=底×高,用字母表示为S=ah。
⑤两个完全相同的三角形可以拼成一个平行四边形,所以三角形的面积等于与它等底等高的平行四边形面积的一半,即三角形的面积=底×高÷2,用字母表示为S=12ah。
⑥两个完全相同的梯形可以拼成一个平行四边形,所以梯形的面积等于与它等高,但底是梯形上、下底之和的平行四边形面积的一半,即梯形的面积=(上底+下底)×高÷2,用字母表示为S=12(a+b)h。
⑦圆的周长=圆周率×直径,用字母表示为C=πd。
⑧把圆平均分成若干个小扇形后,可以拼成近似的长方形,因此圆的面积等于长为圆周长的一半,宽为圆的半径的长方形的面积,即圆的面积=圆周率×半径×半径,用字母表示为S=πr•r=πr2。
(结合学生回答,课件演示各计算公式的推导过程,并在相关图形下板书字母公式)
⊙典型例题解析
1.课件出示例1。
(1)如下图,把一个长方形框架拉成一个平行四边形框架,这个平行四边形的面积与原来长方形的面积相比,( )。
A.长方形的面积大
B.平行四边形的面积大
C.面积一样大
(2)等腰梯形的周长是48 cm,面积是96 cm2,高是8 cm,则腰是( )。
A.24 cm B.12 cm C.18 cm D.36 cm
问题(1)分析 本题考查学生对周长相等且边长也相等的长方形和平行四边形面积大小的掌握情况。
把一个长方形框架拉成一个平行四边形框架,周长没变,底边没变,但高变了,所以面积发生了变化,面积变小了。
解答 A
问题(2)分析 本题考查学生运用梯形的周长、面积等知识解答相关问题的能力。
梯形的面积=(上底+下底)×高÷2,所以上底+下底=梯形的面积×2÷高。
等腰梯形的两腰和=梯形的周长-(上底+下底),腰=等腰梯形的两腰和÷2。
96×2÷8=24(cm) 48-24=24(cm)
24÷2=12(cm)
解答 B
2.课件出示例2。
计算这个图形的面积需要知道哪些条件?量一量,并算出图形的面积。
分析 本题考查学生对测量、计算方法的掌握和对面积公式的理解情况。
计算这个图形的面积需要知道平行四边形的一个底以及该底上的高。
解答 方法一 以下(或上)边为底
底:2 cm,高:1.2 cm,面积:2×1.2=2.4(cm2)
方法二 以右(或左)边为底
底:1.5 cm,高:1.6 cm,面积:1.5×1.6=2.4(cm2)
⊙探究活动
1.明确探究内容。
课件出示:王大爷用篱笆围了一个半圆形的养鸡场。已知养鸡场的直径是12 m。篱笆长多少米?养鸡场的占地面积是多少?
2.小组合作,分析、讨论、解答。
3.汇报解题思路及注意事项。
预设
生1:在解决实际问题时,弄清楚是求周长还是求面积。
生2:篱笆围在养鸡场的周围,求篱笆的长就是求半圆形养鸡场的周长;养鸡场的占地面积是指篱笆所围的面积,即半圆形养鸡场的面积。
从图上可以看出,半圆的周长包括弧长和一条直径的长,所以篱笆的长是3.14×12÷2+12=30.84(m)。
生3:半圆的面积就是圆面积的一半,所以养鸡场的占地面积是3.14×(12÷2)2÷2=56.52(m2)。
4.活动小结。
从例题中我们发现,半圆的面积就是圆面积的一半,但半圆的周长并不等于圆周长的一半。例如把一个长方形分成两个相等的小长方形之后,每个小长方形的面积等于大长方形面积的一半,每个小长方形的周长不等于大长方形周长的一半;把一个圆柱切成两块后,总体积没有变化,总表面积却发生了变化。这些“变”与“不变”,都是值得我们思考和研究的。
⊙课堂总结
通过本节课的复习,你掌握了什么?
⊙布置作业
教材87页4题,89页3题。
板书设计
|
|