三、解答 1.某班同学为地震灾区小朋友捐献图书,所捐图书共分为故事书、科技树和教辅资料书三类,捐书的情况是:有捐一本的,有捐两本的,还有捐三本的。问至少要有几位同学来捐书才能保证一定有两位同学所捐书的类型相同?(每种类型的书最多捐一本) 考查目的:综合运用排列组合、抽屉原理的知识解决实际问题。 答案:7+1=8(位) 答:至少要8位同学来捐书,才能保证一定有两位同学所捐书的类型相同。 解析:分析捐书的情况,捐一类的:故事书、科技书、教辅资料书共三种;捐两类的:故事书和科技书、故事书和教辅资料书,科技书和教辅资料书共三种;捐三类的是一种;总共有7种不同的捐法。把这7种情况看作7个抽屉,要保证有两位同学捐书的类型相同,只要8名同学即可。 2.在如下图的盒子中,小华蒙着眼睛往外摸球,至少要摸出多少个,才能保证摸出的球至少有3种不同的颜色? 考查目的:利用抽屉原理的知识解决实际问题。 答案:5+4+1=10(个) 答:至少要摸出10个球,才能保证有3种不同的颜色。 解析:因为各种颜色的球的数量有所不同,所以从“最差”的情况考虑:先摸出了5个绿球和4个黄球,只有2种颜色,此时再摸出任意一个球,都能保证摸出的球至少有3种不同的颜色。 3.扑克牌里学数学:一副扑克牌(取出两张王牌)。 (1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的? (2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃? (3)至少要抽出多少张才能保证有5张牌是同一花色的? 考查目的:综合运用抽屉原理的知识解决实际问题。 答案:(1)9÷4=2……1 2+1=3(张) 答:至少有3张是同花色的。 (2)13×3+1=40(张) 答:至少要抽出40张牌才能保证有一张是红桃。 (3)4×4+1=17(张) 答:至少要抽出17张才能保证有5张牌是同一花色的。 解析:(1)任意抽出9张牌,假设每种花色的各有2张,剩下的一张不管是什么花色,都可以保证至少有3张是同花色的;(2)要保证有一张是红桃,考虑到最差情况,将不是红桃的牌都抽光,只要再抽一张就一定是红桃;(3)要保证5张是同花色的,可以假设4种花色的都抽取了4张,只要再抽一张即可。 4.在下面的方格中,将每一个方格涂上红色或黄色,不论怎么涂,至少有几列的颜色是完全相同的? 考查目的:利用抽屉原理的知识解决问题。 答案:9÷4=2……1 2+1=3(列) 答:不论如何涂色,至少有3列的颜色是完全相同的。 解析:每一列有四种不同的涂法(如下图),将9列看作9个物体,四种不同的涂法看成4个抽屉,9÷4=2……1,即每种涂色的方法各涂出2列后,还剩下1列,所以至少有2+1=3(列)的颜色是完全相同的。 5.小花猫钓到了鲤鱼、草鱼、鲫鱼三种鱼共12条,放在桶里提回家去,路上遇见了小白猫,小花猫问小白猫:“你最爱吃什么鱼?”小白猫说:“我最爱吃的是鲤鱼。”小花猫说:“好,你只要从我的桶里随便拿出3条鱼来,就一定会有你最爱吃的鲤鱼,不过你得先告诉我,我一共钓了几条鲤鱼?”小白猫说了一个数,并从桶里拿出3条鱼,果然有鲤鱼,小花猫把1条鲤鱼送给了小白猫。那么,小花猫到底钓到了几条鲤鱼呢? 考查目的:利用抽屉原理的知识解决问题;培养学生数学阅读的能力。 答案:12-(3-1)=10(条) 答:小花猫钓到了10条鲤鱼。 解析:从最不利的情况考虑,先拿出的2条鱼都不是鲤鱼,要满足“拿出3条鱼来,就一定会有你最爱吃的鲤鱼”,说明不能再有草鱼和鲫鱼,所以草鱼、鲫鱼这两种鱼加起来最多只有两条,剩下的全部都是鲤鱼。
|