|
5#
楼主 |
发表于 2015-3-6 16:05:55
|
只看该作者
(3) 认、读、写中间有0的四位数。
例7教学的数,中间(百位、十位)有一个0或两个0,这是学生学习的一个难点。教材仍然让学生在算盘上,照例题的
样子拨出四千零六十和七千零三,在拨数时了解它们的组成。学生先对照着算盘表示的数,从高位到低位写出每一位上
的数,再依据数的组成写出数,能够体会到写数的要领:哪一位上有几个单位,就在这一位上写几,哪一位上一个单位
也没有,就在这一位上写0。教学时要适当帮助学生读中间有0的数:数中间的“0”应该读出来,无论数的中间有一个0
还是有两个0,都读一次“零”;数末尾的“0”一般不读。
例7后的“想想做做”第2题,对齐着数位顺序表的各个数位写出三个数,要求学生对照着数位顺序表分析数的组成并读
数。这比看着算盘上的数抽象一些,但有利于提高学生读写数的能力。其实,对照着数位顺序表读数和写数,也只是一
个过渡。学生最终要把数位顺序想在脑子里,并自主进行认、读、写,这才是教学的目标。第5题口算几千加几百和相
应的减法,能够强化对几千几百的认识。要引导学生联系数的组成思考得数。
3. 在开放的情境里比较数的大小。
把比较三位数的大小和比较四位数的大小结合起来教学,主要有两点原因:一是比较两个三位数的大小和比较两个四位
数的大小,原理和方法是一致的。只要在比较两个百以内数大小的基础上,完善比较方法、丰富比较经验,以适应各种
情况。合起来教学能够避免不必要的重复,提高教学效率。二是如果把比较三位数的大小与比较四位数的大小分开教学
,容易遗漏一个三位数与一个四位数的比较,造成比较万以内数的大小里的一个空白点。现在合并成比较万以内数的大
小,以比较四位数为主,兼顾三位数,能弥补这个空白。
例8设计开放的情境,让学生在宽松的氛围中主动开展比较活动。
首先,例题的题材是开放的,分别提供了电视机、洗衣机、电冰箱和空调器四种商品的价钱,依次是2530元、980元、
2350元和3180元。这四种商品的价钱可以两两相比,先比较电视机和空调器的价钱,再比较电视机和电冰箱的价钱,然
后由学生任意选择两样商品比比价钱。这些比较里,有千位上数不同的四位数、千位上数相同的四位数、三位数与四位
数等各种情况,有利于完整地教学万以内数的大小比较。
其次,比较的思路和方法是开放的。学生可以从自己的数学现实和个性特点出发,设计自己的比较方法。正如比较2530
和3180的大小,有人会想2530是2千多,3180是3千多,得出2530小于3180。有人根据两个数的组成,直接比千位上的数
,得出2530小于3180。学生中还可能有其他想法,在班集体里,方法一定是多样的。教学应该鼓励学生有自己的方法,
尊重他们的思考。
另外,自己选两种商品比较价钱也是开放的。有人会仍然比较两个四位数的大小,重温前面的比较方法,有人会选择一
个三位数和一个四位数,体验“位数多的数大于位数少的数”。
最后,各人积累的体验是开放的。例题问学生“怎样比较两个数的大小”,引导他们反思并积累比较数的大小的经验。
教学时,一方面可以帮助学生总结出几个要点,例如,两个数的位数不同如何比较大小?两个数的位数相同如何比较大
小?另一方面不要以条文式的方法去限制学生,要允许学生保持自己的想法,使用自己的方法。
例8后的“想想做做”里,用“多得多”“多一些”“少很多”“少一些”等词语描述数与数的大小关系,生动形象,
便于理解,便于交流。这些词语曾经在100以内数的范围里用过,现在应用于万以内的数。随着数的范围扩大,词语含
义的相对性越来越大,学生对此会有更加丰富、更加深刻的体会,他们的数感也会随之得到发展。
4. 初步认识近似数。
日常生活中往往不需要十分精确的数,只要知道大约多少就够了。例如,某小学大约有1000名学生中午在学校用餐,学
校食堂每天大约用大米150千米。这里的1000名学生和150千克大米都是近似数。近似数是接近精确数的数,通常是整十
、整百、整千、整万或整亿的数,读、写都比精确数简便。使用近似数方便了描述与交流,便于解决问题。善于使用近
似数是具有良好数感的表现之一,也是以后进行估算所需要的基础。
小学数学分两次教学整数的近似数。本单元是第一次,仅是初步认识。教材里没有出现“近似数”这个词语,也不用“
四舍五入法”求近似数。只是通过某些三位数接近几百、某些四位数接近几千,得出这些数的近似数。同时,让学生认
识约等号,并用它来表示近似数。
例9分三步教学近似数的初步知识。第一步给出龙岗小学有学生695人,东山小学有学生703人,提出问题“这两个学校
的学生各接近几百人”,从而创设认识近似数的情境。第二步要求学生联系三位数的知识,得出两个学校的学生数都接
近700人,通过“比700少一些”“比700多一些”,初步体会“接近700”的含义,体验找到“接近700的数”的思考方
法。第三步教学约等号的知识,指出这个数学符号的名称、写法、读法和用法。
“接近几百”既是三位数的近似数的含义,也是求三位数的近似数的思考方法,这个方法也可以迁移到求四位数的近似
数上面。“试一试”让学生写出2016人大约是几千人,就要想“2016最接近几千”。
教材希望“接近几百”是学生的体验,不是强调使用某种方法的判断。“想想做做”第1题,在数轴上表示出500、510
、520…600,让学生体会哪几个数接近500,哪几个数接近600。虽然不讲“四舍五入法”,学生仍然能体会到510、520
、530、540都小于550,接近500;560、570、580、590都大于500,接近600。他们从这里获得的体验,将会有效支持他
们求三位数或四位数的近似数。
教材十分重视解决实际问题时求近似数,让学生感受近似数能应用于解决实际问题。例如,配合例9的“想想做做”第4
题给出四个村的植树棵数4095、3880、3016、4980,要求学生先说出每个村大约植树几千棵,然后寻找哪两个村植树的
棵数差不多,并把四个村植树的棵数从小到大排列。显然,这里利用近似数,找差不多的两个数,以及按大小次序排列
四个数会方便许多。又如,单元复习第7题,给出书店四天售出书的册数5015、5972、3107、4890,要求学生寻找第几
天售书的册数与第一天差不多,第几天售书的册数比第一天少得多,如果利用近似数解决这些问题,自然也会方便些。
|
|