3.圆柱的体积。 (1)例5。 例5教学圆柱体积公式的推导。教材先让学生思考:圆柱能否转化成已学过的立体图形来计算体积。然后通过教具演示如何把圆柱转化为一个近似的长方体,并通过观察和推理得出圆柱的体积计算公式V=Sh。 教学时,可先让学生复习圆面积以及长方体体积的计算公式,再引导学生思考:能否将圆柱转化成一种学过的图形,再计算出它的体积。借助教具直观演示圆柱如何转化为近似的长方体,并引导学生通过想像发现:底面分成的扇形越多,拼起来的形状就越接近长方体,从而导出圆柱体积的计算公式。 (2)例6。 例6教学利用圆柱体积的计算解决问题。 教学时,要引导学生明确:求杯子的容积就是求这个圆柱形杯子可容纳东西的体积,计算方法跟圆柱体积的计算方法一样。 (二)圆锥 1.圆锥的认识。 (1)主题图。 教材先展示生活中常见的圆锥形实物图,然后从实物图中抽象出圆锥的几何图形,并给出图形的名称——圆锥,使学生经历从具体到抽象的过程。 (2)例1。 例1教学圆锥的组成及其特征,并介绍测量圆锥的高的方法。然后,通过让学生快速转动贴有直角三角形纸的小棒,引导他们从旋转的角度认识圆锥。 教学时,可先复习圆柱的各部分名称及特征,以便通过对比,了解圆锥的组成及特征。圆锥的高的认识是教学难点,教学时要引导学生区分高和母线,并帮助学生了解测量圆锥的高的方法。做转动三角形纸片活动时,可先让学生猜测,再操作。 “做一做”是制作圆锥,加深对圆锥的认识。 2.圆锥的体积。 (1)例2。 例2教学圆锥体积公式的推导。教材主要按“引出问题——联想、猜测——实验探究——导出公式”四个层次编排。 教学时,在引出问题环节,让学生体会推导圆锥体积公式的必要性。在猜想环节,引导学生将圆锥的体积与圆柱的体积联系起来。实验探究时,引导学生发现:用圆锥容器装水(或沙土)倒入等底等高的圆柱容器中,刚好倒三次,反之则不存在这样的关系。最后,帮助学生得出在等底等高条件下:圆锥的体积= 圆柱的体积= 底面积×高,即 V= Sh。
|