|
平分线的性质教学反思
本节课的教学目标是了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。为了让学生掌握角的平分线的性质定理和逆定理的运用,对这两个定理的学习进行以下设计:用数学语言给出条件和结论,让学生熟悉这两个定理的条件和结论后,再拿一些具体题目让学生在情境当中运用这两个定理。用数学语言叙述角平分线的性质定理。条件:点P是角AOB平分线上的一点,PD垂直OA,PE垂直OB。结论:PD=PE。用数学语言叙述角平分线性质定理的逆定理。条件:点P是角AOB上的一点,PD=PE,PD垂直OA,PE垂直OB。结论:点P在角AOB的平分线上。具体题目设计,第22页第2,3题,第26页第5题。让学生看到题目后指出该用哪个定理。
一、成功之处
1、通过具体情境使学生能够比较容易的运用这两个定理。
许多学生学习了某个定理后,遇到相对应的题目往往不知道该用哪个定理,通过一些对应的题目,或者用数学语言给出条件,让学生得出结论,并说出用的是哪个定理,可以强化学生对定理的运用能力。
2、注重分析思路,学生学会思考问题,注重书写格式,让学生学会清楚的表达思考的过程。在证明的选题上,注意了减缓坡度,循序渐进。在开始阶段,证明方向明确,过程简单,书写容易规范化,这一阶段要求学生体会例题的证明思路及格式,然后再逐步增加题目的复杂程度,小步前进,每一步都为下一步做准备,下一步又注意复习前一步训练的内容。通过精心角平分线的证明问题,减缓学生几何证明的坡度。
二、不足之处
1、学生缺乏具体的自主探究几何的机会,只是培养了学生的几何证明思路。
2、没有理论结合实际生活。教材有通过确定集贸市场的位置的问题引出“到角平分线的两边距离相等的点在角的平分线上”的结论,使学生看到理论来自实际需要。但是教学上并没有体现。
|
|