|
《整式的加减》说课稿
博厚中学 黄小莉 2014年10月19日
一、说教材
1、教材分析
本节课中要学习整式的加减运算,以西宁到拉萨路段为背景引入教学知识。根据路程、路程、速度、时间之间的数量关系,设计了几个问题。这些问题的解决需要学习合并同类项,去括号等概念和运算法则。本节课的内容是在学生已有的用字母表示数以及有理数运算的基础上展开的,整式的加减运算是学习下一章一元一次方程的直接基础,也是以后学习分式和根式运算,方程以及函数等知识的基础。
2、学情分析
在整式的加减运算中,让学生把整式计算与有理数计算进行类比,体会数式通性,既可以复习前面所学数的知识,又使得式的有关知识得以简化,在教学中,多设计小问题,引导学生由易到难,小组合作,探究、进行自主学习,培养他们对知识的探索精神。
二、教学目标
1、知识与技能:进一步熟练,合并同类项的方法,会进行简单的合并同类项。
2、过程与方法:通过类比有理数的运算,体会数式通性。
3、情感态度与价值观
把问题通过小组交流,合作探究,总结归纳;通过数与式运算的分析,培养学生自主学习良好习惯。
三、教学重难点
本节重难点是合并同类项法则的探究过程。
四、教学过程
1、复习:①同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
②合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、探究新知
①分析例2:⑴求多项式2x²-5x+x²+4x-3x²-2的值,其中x=½。
⑵求多项式3a+abc-⅓c²-3a+⅓c²的值,其中a=﹣1/6,b=2,c=﹣3.
师生合作探究:一种方法是直接把x的值代入多项式计算;第二种是把多项式经过合并同类项,即化简后,再代入x的值计算,比较两种方法哪种简便?
解法1:把x=½代入2x²-5x+x²+4x-3x²-2得
2×﹙½﹚²-5×½+﹙½﹚²+4×½-3×﹙½﹚²-2
=2×¼-5×½+¼+4×½-3×¼-2
=½-2.5+¼+2-¾-2
=﹣2-½
=﹣2.5
解法2:2x²-5x+x²+4x-3x²-2
=﹙2+1-3﹚x²+﹙﹣5+4﹚x-2
=﹣x-2
当x=½时,原式=﹣½-2=﹣2.5
教师总结:通过两种解法的比较得出,先化简多项式,再把x的值代入化简后的整式进行计算简便。
⑵3a+abc-⅓c²-3a+⅓c²
=﹙3-3﹚a+abc+﹙﹣⅓+⅓﹚c²
=abc
当a=﹣1/6,b=2,c=﹣3时
原式=abc=﹙﹣1/6﹚×2×﹙﹣3﹚=1
2、练一练:求下列各式的值
⑴3a+2b-5a-b,其中a=﹣2,b=1;
⑵3x-4x²+7-3x+2x²+1,其中x=﹣3
3、分析P65的例3
例3:1、水库中水位第一天连续下降了a小时,每小时平均下降2m;第二天连续上升了a小时,每小时平均上升0.5cm,这两天水位总的变化情况如何?
2、某商店原有5袋大米,每袋大米为x千克,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米多少千克?
学生:小组合作探究
教师总结:1、把下降水位变化量记为负,上升的水位变化量记为正,第一天水位的变化量为﹣2acm,第二天水位变化量为0.5acm。
两天水位变化量为﹣2a+0.5a=﹙﹣2+0.5﹚a=﹣1.5a﹙cm﹚
2、把进货的数量记为正,售出的数量记为负
进货后这个商店共有大米5x-3x+4x=﹙5-3+4﹚x=6x﹙kg﹚
四、小结:熟悉合并同类项的法则,要求多项式的值,必须将多项式适当化简后可以化简计算。
五、作业P70﹙4、5﹚
|
|