绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 6605|回复: 4
打印 上一主题 下一主题

小学毕业数学总复习经典好题解析(填空)

[复制链接]
跳转到指定楼层
楼主
发表于 2010-2-13 10:16:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
1、甲、乙两个数的和是389.4,如果把甲数的小数点向右移动一位,就和乙数相等,甲数是(35.4)
  解析:
  甲数的小数点向右移动一位,就是扩大10倍,与乙数相等,则乙数是甲数的10倍,389.4与甲、乙倍数的和相对应。所以,甲数:389.4÷(10+1)=35.4
  
  2、汽车从甲地到乙地用了5小时,从乙地返回甲地用了4小时,返回时速度比去时快(25)%。
  解析:
  去时速度是1/5,返回时的速度是1/4,
  (1/4-1/5)÷1/5=25%
  
  3、甲、乙两车同时从A、B两地相对开出,经过8小时相遇,相遇后两车继续前进,甲车又用了6小时到达B地,乙车要用(十八又三分之二)小时才能从B地到达A地。
  解析:
  两车8小时相遇可知两车速度和是1/8,相遇后甲车又用了6小时到达B地,可知甲车从A到B共用(8+6)=14小时,又知甲车速度是1/14。
  1÷(1/8-1/8+6)=56/3
  即:十八又三分之二
  
  4、张丽家藏书的2/3和李强家藏书的4/5同样多,(张丽)家藏书多。
  解析:
  利用比和比例知识进行比较
  张丽家书×2/3=李强家书×4/5
  张丽家书:李强家书=4/5:2/3=6:5
  张丽家书的份数是6份,李强家书的份数是5份,即:张丽家书多。
  
  5、有27人乘车郊游一天,可供租用的车辆有两种,面包车每辆可乘8人,每天租金80元;小轿车每辆可乘4人,每天租金50元。一共租(3)辆面包车和(1)辆小轿车最省钱,应花(290)元。
  解析:
  把27人分成8人一组有3组余3人,
  即27=8×3+3
  分成4人一组有5组余7人
  即27=4×5+7
  比较几种租法应花多少钱?
  一:3辆面包车+1辆轿车共花290元
  二:5辆轿车+1辆面包车花330元
  三:租4辆面包车花320元
  四:租7辆轿车花350元
  通过比较第一种要省钱点。
  
  6、有两家商场进行商品热卖活动。第一家商场采用买够50元商品返还10元;第二家商场对所有商品打九折。有同样一套衣服,两家商场都卖120元,根据优惠条件,应到(第一家)商场买这套衣服更便宜些。
  解析:
  第一家商场买够50元返还10元,即买100元返还20元,所以买这套衣服应花120-20=100(元)
  第二家商场打九折,即便宜商品价钱的10%,所以,用120×90%=108(元)
  比较一下第一家要便宜些。
  
  7、15个连续的自然数中,最大数是最小数的3倍,这15个自然数的和是(210)。
  解析:
  先求最小数14÷(3-1)=7
  7+8+9+……+21=210
  即:210
  
  8、如果两个自然数相除,商是4,余数是3,被除数、除数、商、余数的和是100,那么被除数是(75)。
  解析:
  因为被除数÷除数=商……余数
  则被除数=除数×商+余数
  根据题意
  (除数×商+余数)+除数+商+余数=100
  解:设除数为X
  X×4+3+X+4+3=100
  5X+10=100
  X=18
  被除数:18×4+3=75
  
  9、有甲、乙、丙三箱水果,甲箱质量与乙、丙两箱质量和的比是1:5,乙箱质量与甲、丙质量之和的比是1:2,甲箱质量与乙箱质量的比是(1:2)。
  解析:
  从第一个条件可知,甲+乙+丙=6份
  从第二个条件可知,甲+乙+丙=3份
  则甲占总数的1/6,乙占总数的1/3。
  甲:乙=1/6:1/3=1:2
  
  10、在一个减法算式中,被减数、减数、差的和是144,差与被减数的比是5:9,减数和差的积是(1280)。
  解析:
  根据差与被减数的比是5:9
  可推断出减数是9-5=4
  按比分配的方法
  5+9+(9-5)=18
  (144×4/18)×(144×5/18)=1280


分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2010-2-13 10:17:00 | 只看该作者
11、有三个数,甲、乙平均数是21.5,乙、丙的平均数是22.5,甲、丙的平均数是16,甲是(15),乙是(28),丙是(17)。
  解析:
  甲、乙平均数是21.5
  甲乙的和是21.5×2
  乙、丙的平均数是22.5
  乙丙的和是22.5×2
  甲、丙的平均数是16
  甲丙的和是16×2
  三个数的和是:
  (21.5×2+22.5×2+16×2)÷2=60
  甲数60-22.5×2=15
  乙数60-16×2=28
  丙数60-21.5×2=17
  
  12、三个质数倒数的和是a/231,a等于(131)。
  解析:
  三个质数的倒数一定是三个分子为1分母为质数的分数。要求这三个分数的和,因为分母都是质数,公分母一定是这三个质数的积,即231。
  把231分解质因数
  231=3×7×11
  那么1/3+1/7+1/11=131/231
  
  13、在比例尺是1:500的地图上量得一块长方形田长是30厘米,宽是20厘米,这块田的实际面积是(15000)平方米。
  解析:
  先算实际的长和宽是多少,在算出实际面积。
  (30×500)×(20×500)=150000000(平方厘米)
  150000000平方厘米=15000平方米
  
  14、有一个比的比值是5,已知这个比的前项、后项与比值的和是23,写出这个比是(15:3)。
  解析:
  比的前项相当于除法中的被除数,后项相当于除法中的除数,比值相当于除法中的商,可以这样想:已知一个除法的商是5,被除数、除数与商的和是23,也就是比的前项、后项与比值的和是23,所以23-5=18,就是比的前项和后项之和,根据已知可知前项是后项的5倍,前项与后项倍数和是6,
  所以18÷(5+1)=3,
  3是比的后项,前项是3×5=15
  
  15、在一个比例中,每个比的比值是0.7,四个项的和是374,两个外项的最简比是21:80,这个比例是(42:60=112:160)
  解析:
  已知两个外项的最简比是21:80,再根据每个比的比值0.7,可以分别求出两个内项,把两个内项分别假设为为x和y,
  那么,21:x=0.7,x=30,y:80=0.7,y=56。
  这两个最简比组成的比例为:
  21:30=56:80,因为四个项的和
  21+30+56+80≠374,显然374是这四个项的和的倍数374÷(21+30+56+80)=2
  所以,把各个项都扩大2倍,才能满足已知条件,四个项分别是
  21×2=42,30×2=60,56×2=112,80×2=160
  
  所以这个比例是42:60=112:160
  
  16、有一个两位数,十位上的数是个位上数的2/3,十位上的数加上2,就和个位上的数相等,这个数是(46)。
  解析:
  根据比的意义,十位上的数字是2份,个位上数字是3份,相差1份,1份对应的就是2,所以,个位上数字是:2×3=6,十位上数字是2×2=4,这个数是46。
  
  17、已知被除数除以除数等于15余4,还知被除数与除数的和是196,那么被除数是(184),除数是(12)。
  解析:
  整理已知条件,
  被除数÷除数=15……4
  被除数+除数=196
  根据有余数的除法各部分的关系可得:
  被除数-4=除数×15
  假设,被除数-4得到的是一个新数我们命名为新的被除数,
  即,新的被除数=除数×15
  又因为,被除数+除数=196
  把被除数换成新的被除数得,
  新的被除数+除数=196-4
  接下来把新的被除数换成被除数得,
  除数×15+除数=196-4
  除数×16=192
  也就是除数的16倍是192,
  除数等于,192÷16=12
  被除数是,196-12=184
  
  18、甲、乙两数的和是28,如果把甲数的2/9给乙数,这时甲、乙两数恰好相等,原来甲数是(18)
  解析:
  由题中“把甲数的2/9给乙数”可知,甲有9份,给乙2份,还剩下7份,与乙相等,说明乙原有9-2×2=5份
  一份是,28÷(9+5)=2
  甲9份是,2×9=18。
  
  19、一种商品原价是200元,出售时第一次降价10%,第二次又降价10%,第二次降价后是(162)元。
  解析:
  第一次出售降价10%,也就是按(1-10%)=90%出售的,第二次是在第一次降价后又降价10%,也就是按90%的(1-10%)出售的。
  列式:200×(1-10%)×(1-10%)=162(元)
  
  20、小明上山每分钟行50米,16分钟到达山顶,再按每分钟80米的速度按原路下山,那么,上、下山每分钟平均行(62)米。
  解析:
  求上、下山每分钟平均行的米数,就要知道共行多少米,共用多少分钟,这道题下山的时间是未知的,可用下山的路程÷下山的速度得到,即56×16÷80=10(分)
  上、下山每分钟平均行的米数
  50×16×2÷(16+50×16÷80)≈62(米)
回复

使用道具 举报

板凳
 楼主| 发表于 2010-2-13 10:17:00 | 只看该作者
21、被减数比差多125%,那么减数是被减数的(5/9)。
  解析:
  根据已知可列出(被减数-差)÷差=5/4
  因为(被减数-差)=减数。
  所以,减数÷差=5/4,减数是5份,差是4份。又因为被减数=差+减数,则被减数是9份,那么减数是被减数的5/9。
  
  22、甲数与乙数的比是7:3,如果把甲数增加20,这时甲数是乙数的5倍,原来甲数是(17.5),乙数是(7.5)。
  解析:
  甲数与乙数的比是7:3,运用比和除法的关系可以转化为甲数是乙数的7÷3=7/3,即:乙数是一倍数,甲是乙的7/3倍,又知甲增加20,甲是乙的5倍,则20是5倍与7/3倍的差,求乙数,用除法20÷(5-7/3)=7.5,甲数是:7.5×7/3=17.5。
  
  23、两个数的差相当于被减数的3/8,减数是差的(一又三分之二)倍。
  解析:
  根据:减数=被减数-差,差相当于被减数的3/8,可知减数相当于被减数的5/8,根据以上两个条件可知5/8÷3/8等于一又三分之二。
  
  24、把360分成两个数,已知两个数之差除他们的和,商是60,那么甲数是(183),乙数是(177)。
  解析:
  把360分成两个数,那么两数的和就是360,根据题意,360÷两数差=60,那么两数的差为6,在根据和、差问题计算,
  大数:(360+6)÷2=183
  小数:360-183=177
  
  25、两个数的积是1988,有一个数在50和100之间,这两个数是(28),(71)。
  解析:
  先把1988分解质因数,再从中找出50和100之间的那两个数。
  1988=2×2×7×71
  71和2×2×7=28
  
  26、一昼夜已经过去了3/4,余下的时间比过去的时间少(2/3)。
  解析:
  把时间具体的算出来,24×3/4=18(时)
  余下24-18=6(时)
  (18-6)÷18=2/3
  
  27、一辆汽车以每小时100千米的速度从甲地开往乙地,又以每小时60千米的速度从乙地开到甲地,这辆汽车的平均速度是(75)千米。
  解析:
  求这辆车的平均速度,可这样想:
  总路程÷总时间=平均速度
  总路程未知,可以假设为1,往返路程为2,每小时行100千米,所用时间为1/100,每小时行60千米,所用时间为1/60,
  2÷(1/100+1/60)=75(千米)
  
  28、某校五年级学生人数的2/3等于四年级学生人数的4/5,那么五年级人数是四年级人数的(6/5),四年级人数是五年级人数的(5/6)。
  解析:
  应用比例的基本性质,求出五年级有几份,四年级有几份。
  五年级人数×2/3=四年级人数×4/5
  五年级人数/四年级人数=4/5/2/3=6/5
  五年级是6份,四年级是5份。
  则,五年级人数是四年级人数的6/5,四年级人数是五年级人数的5/6。
  
  29、一辆汽车从甲地开往乙地,若速度提高1/5,则时间减少(1/6)。
  解析:
  速度提高1/5,可知原来的速度是5份,现在的速度是6份,原来速度与现在速度的比是5:6,路程一定,那么时间的比与速度的比相反,原来的时间是6份,现在的时间是5份,是6:5,
  则时间减少(6-5)÷6=1/6
  
  30、一个梯形,它的高与上底的乘积是15平方厘米,高与下底的乘积是21平方厘米,这个梯形的面积是(18平方厘米)。
  解析:
  梯形的面积计算公式:S=(a+b)×h÷2
  把这个公式根据乘法分配律可以写成:
  S=(ah+bh)÷2,由已知条件可知,
  ah=15,bh=21,所以,
  面积是:(15+21)÷2=18(平方厘米)
回复

使用道具 举报

地板
 楼主| 发表于 2010-2-13 10:17:00 | 只看该作者
31、一个长方体,长与宽的和是9厘米,长与宽的积是20平方厘米,高是3厘米,这个长方体的表面积是(94平方厘米)。
  解析:
  已知长与宽的和可求出底面周长,知道底面周长就可求出侧面积,即前、后面,左、右面之和,通过长与宽的面积可求出上、下两个面的面积,侧面积加上上、下两个面面积就得到表面积。
  上、下面:20×2=40(平方厘米)
  底面周长:9×2=18(厘米)
  侧面积:18×3=54(平方厘米)
  表面积:54+40=94(平方厘米)
  
  32、一个长方体,如果长增加3厘米,高与宽不变,体积则增加24立方厘米,如果宽增加4厘米,长与高不变,体积则增加40立方厘米,如果高增加5厘米,长与宽不变,体积则增加100立方厘米,原来这个长方体的表面积是(76平方厘米)。
  解析:
  长方体的体积=长×宽×高
  根据已知可求出:
  高与宽的积:24÷3=8
  长与高的积:40÷4=10
  长与宽的积:100÷5=20
  即长方体的长是5厘米,宽是4厘米,高是2厘米。
  表面积是:
  (长×宽+长×高+宽×高)×2=(20+10+8)÷2=76(平方厘米)
  
  33、在一个半径是5米的半圆形花坛的周围,围一圈竹篱笆,这圈竹篱笆长(25.7米)。
  解析:
  这个篱笆的长应为半圆弧长加上一个直径。
  半圆弧长:5×2×3.14÷2=15.7(米)
  直径+弧长:15.7+5×2=25.7(米)
  
  34、一个长方形的长是16分米,如果把长增加4分米,要使长方形的面积不变,宽应当减少(20)%。
  解析:
  用百分数应用题方法:
  现在的长是原长的(16+4)÷16=125%
  现在宽是原宽的1÷125%=80%
  宽比原来减少1-80%=20%
  
  35、把体积是5立方分米的圆锥从高的一半处截去一个小圆锥,剩下的部分装在一个圆柱形盒中,这个盒子的容积最小是(7.5立方分米)。
  解析:
  原来的圆锥体底面积与圆柱体盒子的底面积相等,而圆柱形盒子的高是圆锥体高的一半,只要求出与圆锥体等底等高的圆柱体的体积,就可以顺利求出圆柱形盒子的容积:
  5×3÷2=7.5(立方分米)
  
  36、把一段12米长的篱笆围成一个长方形(也可以是正方形),当长与宽的比是1:1时,围成的面积最大;如果一边靠墙,其他三边仍用12米长的篱笆围成,当长与宽的比是(2:1)时,围成的面积最大。
  解析:
  用12米长的篱笆围成边长是3米的正方形面积最大。将一边靠墙,多出来的3米,分几次增加到其他三边上,符合条件的有:
  1)4,4,4
  4×4=16(平方米)
  2)3,6,3
  6×3=18(平方米)
  3)3.5,5,3.5
  5×3.5=17.5(平方米)
  4)2,8,2
  8×2=16(平方米)
  5)1,10,1
  10×1=10(平方米)
  ……
  通过规律可得出(2)6×3=18(平方米)
  围成的面积最大
  即6:3=2:1
  
  37、一个体积是160立方厘米的长方体中,两个侧面的面积分别为20平方厘米,32平方厘米,这个长方体的底面的面积是(40平方厘米)。
  解析:
  两个侧面的面积20平方厘米,32平方厘米是长与高的乘积,以及宽与高的乘积,用字母表示:
  ah=32,bh=20,
  而体积是abh=160
  那么宽是:160÷32=5(厘米)
  长是:160÷20=8(厘米)
  底面积就是:8×5=40(平方厘米)
  
  38、一个密封的长方体玻璃鱼缸中有水640毫升,相交于玻璃缸一个顶点的三条棱长分别是12厘米、10厘米、8厘米,请你试着把玻璃缸用不同方式摆放在水平桌面上,水面最高高度是(8厘米)。
  解析:
  640毫升是长、宽、高乘积得到的。
  体积÷底面积=高
  玻璃缸有三种摆放方式,
  即:底面积是12×10,12×8,10×8。高度是随着底面积的变化而变化的,
  640÷(12×10)
  640÷(12×8)
  640÷(8×10)
  相比640÷(8×10)=8水面高度最高
  
  39、一个长方体相邻的两个面的面积分别是36平方厘米和24平方厘米,这两个面的公用棱长是4厘米,这个长方体的棱长和是(76厘米)。
  解析:
  画图可知
  假如36平方厘米是长×宽
  那么24平方厘米就是宽×高
  高是公用的棱长,也就是4厘米
  所以长是:36÷4=9(厘米)
  宽是:24÷4=6(厘米)
  棱长和是:(9+6+4)×4=76(厘米)
  
  40、一个圆柱体和一个圆锥体体积的比是2:1,底面积的比是1:2,如果圆柱的高是6厘米,那么圆锥的高是(4.5厘米)。
  解析:
  假设圆柱的底面积是1,高是6厘米,可知圆柱的体积是1×6=6(立方厘米),又因圆柱体积是圆锥的2倍,假设圆锥的底面积是2,圆锥的高是6÷2÷2×3=4.5(厘米)
回复

使用道具 举报

5#
 楼主| 发表于 2010-2-13 10:18:00 | 只看该作者
41、用3个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个长方体的表面积是(42)平方厘米。
  解析:
  如果要使表面积最小,就要使原来小长方体最大的面在拼接时重叠在一起。
  画图理解,
  [3×2+3×(1×3)+2×(1×3)]×2=42(平方厘米)
  
  42、把一个圆柱体沿着底面直径切成若干等份,拼成一个近似的长方体,它的宽是5厘米。又知圆柱的侧面积是37.68平方厘米,这个圆柱体的体积是(94.2)立方厘米。
  解析:
  切割后的圆柱体拼成长方体,长方体的长是圆柱体底面周长的一半,宽5厘米相当于圆柱体底面半径,高还是圆柱体高是未知,可通过侧面积求出高。
  37.68÷[3.14×(5×2)]=1.2(厘米)
  圆柱体积:
  3.14×5×5×1.2=94.2(立方厘米)
  
  43、有一张长方形的纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是(180)平方厘米。
  解析:
  利用画图观察后分析比较直观,已知长剪去8厘米,面积减少72平方厘米,可求出剪去的长方形的宽是:72÷8=9(厘米),同时也是原来长方形的宽,
  宽剪去5厘米,这是面积减少60平方厘米,可以求出剪去的长方形的长是:60÷5=12(厘米),那么原来长方形的长是:12+8=20(厘米),
  原来长方形的面积是:20×9=180(平方厘米)
  
  44、有大、小两个正方形,大正方形的边长比小正方形多4厘米,大正方形的面积比小正方形的面积多136平方厘米,大正方形的边长是(19)厘米。
  解析:
  画图理解,
  要求大正方形的边长,就要在小正方形的边长基础是加上4厘米,
  小正方形的边长:
  (136-4×4)÷2÷4=15(厘米)
  大正方形的边长:15+4=19(厘米)
  
  45、一个直角梯形,若下底增加1.5米,则面积就增加3.15平方米;若上底增加1.2米,就得到一个正方形,这个直角梯形的面积是(15.12平方米)。
  解析:
  画图理解,
  若下底增加1.5米时,增加的面是三角形,并且这个三角形的高等于梯形的高,根据已知条件可求出梯形的高,
  3.15×2÷1.5=4.2(米)
  再根据如果上底增加1.2米,就得到一个正方形,可以求出梯形的上底,
  4.2-1.2=3(米)
  原梯形的面积是:
  (4.2+3)×4.2÷2=15.12(平方米)
  
  46、有一个底面为正方形的长方体,高与底面周长的比是:3:4,侧面积是108平方厘米,这个长方体的体积是(81立方厘米)。
  解析:
  侧面积=底面周长×高
  把侧面展开,高是3份,底面周长是4份,
  108÷(3×4)=9(平方厘米)
  高和底面周长分得的12个小正方形的边长是3厘米,高应为,3×3=9厘米
  长方体的体积是:
  底面边长×底面边长×高
  3×3×9=81(立方厘米)
  
  47、一个圆形桌面的周长是4.396米,请你设计一块正方形桌布,桌布的边至少要垂下桌边40厘米,这块方桌布的边长是(2.2米)。
  解析:
  桌布的边长应为,桌面直径+垂下的部分
  4.396÷3.14=1.4米
  40厘米=0.4米
  1.4+0.4×2=2.2米
  
  48、在圆形水池边上栽种柳树,把树栽在距离岸边均为5米的圆周上,每隔3米栽种一棵,共栽157棵,树与水池间种草,圆形水池的周长是(439.6米),种草的面积是(2276.5平方米)。
  解析:
  要求水池的周长,就必须知道水池的直径或半径,可以通过栽树的周长求出大圆的直径,3×157÷3.14=150(米)
  小圆的直径是:150-5×2=140(米)
  水池的周长为:3.14×140=439.6(米)
  大圆半径:150÷2=75(米)
  小圆半径:140÷2=70(米)
  草地面积:
  大圆面积-小圆面积
  3.14×75×75-3.14×70×70=2276.5(平方米)
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-24 04:47

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表