4.应用练习 (1)780÷30,可以怎样解答? 预设:用除数是整十数的笔算方法解决的。 师:有同学是这样做的。 出示: 师:这样做对吗?为什么? 学生讨论反馈 预设:可以,因为利用了商不变的规律,被除数和除数同时除以10,商不变,这样做可以使计算更简便。 (2)120÷15 师:这道题我们可以怎样解决? 预设:用除数是两位数的笔算方法解决的。 师:利用今天学习的商不变的规律能不能解决这道题? 出示: 120÷15 =(120 × 4)÷(15 × 4) =480÷60 =8 师:被除数和除数为什么都乘4? 生:根据被除数和除数的特点以及商不变的规律,可以直接口算解决。 5.讨论余数 840÷50 师:利用商不变的规律,我们可以列这样的竖式。 出示 师:有的同学认为余数是4,有的同学认为余数是40,到底是多少?为什么? 生:是40,根据商不变的规律,把这道题转化为84个十除以5个十,所以余下的是几个十。 【设计意图】在对比中使学生切实了解到计算过程既有一般方法,又有灵活处理之处,怎样简便就怎样算。 (三)巩固练习,深化认识理解 1.口算应用,加深理解 下面的题你会算吗?怎么算的? 120÷30= 6300÷700= 通过今天的学习,你知道这样做的道理了吗? 商不变的规律在除法口算中已经用过,在今后的学习中还会继续应用。 2.顺应结构,建立模型 (四)回顾历程,产生新的思考 1.咱们回顾一下研究的过程。 2.是什么引发了我们今天的猜想? 因为知识之间的内在联系,引发了我们今天的猜想。 3.把四个规律放在一起看,他们有什么共同的特点? 4.补充知识网络(商不变的规律) 乘法、除法里存在这样的规律,你又想到了什么? 今天的学习,使同学们产生了新的思考,老师真为你们高兴。回去后可以用今天研究问题的方法,自己去探究新问题。 |