|
5#
楼主 |
发表于 2014-8-29 14:56:12
|
只看该作者
第四课时 小数乘小数
教学内容:P7例5、做一做,P9练习一第10—12、14题。
教学目标:
1、使学生进一步掌握小数乘法的计算法则,并能正确计算。
2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
3、理解倍数可以是整数、也可以是小数,学会解答倍数是小数的实际问题。
4、养成认真计算,及时检验的良好学习习惯。
教学重点:运用小数乘法的计算法则;正确计算小数乘法。
教学难点:正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。
教学过程:
一、复习准备:
1、口算:P.5页10题。
0.9×6 7×0.08 1.87×0 0.24×2 1.4×0.3
0.12×6 1.6×5 4×0.25 60×0.5
老师抽卡片,学生写结果,集体订正。
2、不计算,说出下面的积有几位小数。(P9第10题)
3、思考并回答。
(1)做小数乘法时,怎样确定积的小数位数?
(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。
4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。
二、新授:
同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”
1、教学例5:非洲野狗的最高速度是56千米/小时,鸵鸟的最高速度是非洲野狗的1.3倍,鸵鸟的最高速度是多少千米/小时?
(1)想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的最高速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)
(2)是这样的吗?我们一起来算一算?
①怎样列式?
②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)
使学生明确:现在倍数也可以是比1大的小数。
(3)生独立完成,指名板演,集体订正。
(4)算得对吗?用什么方法可以判断他做正确没有?(方法1:把因数的位置交换一下,再乘一遍;方法2:用计算器来验算;方法3:用原式再做一遍;方法4:观察法.因为第二个因数大于1, 所以积一定大于第一个因数。可以发现答案是7.28是错的。)
所以每个小朋友要养成认真做题, 仔细检查的良好习惯.
(5)通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。
2、看乘数,比较积和被乘数的大小。
①(出示练习一第10题中积和被乘数的大小)先计算。
②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?
③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2. 4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。
④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)
⑤专项练习:练习一第12题
先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。
三、运用
1、做一做: 3.2×2.5= 0.8 2.6×1.08=2.708
先判断,把不对的改正过来。
2、P9页第13题
四、体验:今天,你有什么收获?
五、作业:P8 页8题,P9 页11、14题
板书设计: |
|