|
2014年新人教版七年级数学下册6.2立方根教案
6.2 立方根
【教学目标】
知识与技能:
① 了解立方根的概念和表示方法,并会求一个数的立方根;
② 会用计算器求一个数的立方根。
过程与方法:
从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征,最后介绍实用计算器求立方根的方法。
情感态度与价值观:
通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点:立方根的概念和求法
教学难点:立方根的求法。
教学过程:
一、情景引入:
要制作一种容积为 的正方体形状的包装箱,这种包装箱的边长应该是多少?
二、探索归纳:
1.探索:设这种包装箱的边长为 ,则 ,
这就是要求一个数,使它的立方等于27.
因为 ,所以 ,即这种包装箱的边长应为 。
2.归纳:
① 立方根的概念:
一般地,如果一个数的立方等于 ,那么这个数叫做 的立方根或三次方根。
② 立方根的表示方法:
如果 ,那么 叫做 的立方根。记作 , 读作三次根号 。
其中 是被开方数,3是根指数, 中的根指数3不能省略。
③ 开立方的概念:
求一个数的立方根的运算,叫做开立方。开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。
3、探索立方根的特点:
根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?
(1)因为 ,所以8的立方根是( );
(2)因为 ,所以 的立方根是( ) ;
(3)因为 ,所以0的立方根是( );
(4)因为 ,所以 的立方根是( );
(5)因为 ,所以 的立方根是( )。
学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。
归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.
4.探究互为相反数的两个数的立方根的关系:
填空:因为 ___, ___,所以 ___ ;
因为 ___, ___,所以 ___
由上面两个例子可归纳出:一般地, 。
注:这个关系对于正数、负数、零都成立。求负数的立方根时,可以先求出这个负数的
绝对值的立方根,然后再确它的相反数。
三、应用:
例1、 求下列各式的值:
(1) (2) (3)
分析:根据立方根的意义求解。
解:(1) (2) (3)
例2、 求下列各式中 的值:
(1) (2) (3)
分析:此题的本质还是求立方根。
解:(1)∵ ∴ ∴
(2)∵ ∴ ∴
(3)∵ ∴ ∴
例3、用计算器计算 , , , , 的值,你发现了什么?并总结出来。利用你前面发现的规律填空:已知 ,则 ____, ____。
分析:在用计算器求立方根时按键顺序是: 、被开立方的数字、=,
这样即可显示出计算结果
解: , , , ,
由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。
, 。
四、随堂练习:
1、 立方根等于本身的数是___,如果 则 ___。
2、 的立方根是____, 的立方根是____。
3、已知 的立方根是4,求 的算术平方根。
4、已知 ,求 的值。
5、比较大小:(1) __ ,(2) __ ,(3)3__
五、课堂小结
1.立方根和开立方的定义.
2.正数、0、负数的立方根的特征.
3.立方根与平方根的异同.
六、布置作业
课本第51-52页习题6.2第1、3、5、6题;
教学反思:
|
|