例 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么? 解析 这是一个实际应用问题,可以看出,木板的长边和短边都超过了门框的高,薄木板横着或竖着都不能从门框内通过,只能试试斜着能否通过.将门框看作长方形,那么长方形的对角线是门框能通过的最大长度.求出对角线的长,与木板的短边比较,如果对角线的长超过木板的短边,薄木板就能顺利通过门框,否则,就不能通过. 将门框抽象成一个长为1m,宽为2m的长方形,实际问题就抽象成一个数学问题.具体地,长方形有直角,连接对角线,就可以构造直角三角形,该实际问题抽象成已知一个直角三角形的两条直角边的长,求斜边长的数学问题,而这个问题可以用勾股定理来求解. 3.注意直角三角形的运动变化. 在进行例2的教学时,通过学生分析、讨论,两直角三角形的斜边(即梯子的长度)是没有变化的,只有两直角边产生了变化(其中一条直角边是梯子顶端靠在墙面上的高度,另一条直角边是梯脚离墙脚的距离).只比较梯子顶端下滑的距离和梯脚滑动的距离就知道结论是否正确了. |