而“好奇心”则让学生学会思考,养成爱动脑筋、主动思索的好习惯,凡事都要想一想“为什么?”、“后来呢?”,这样正可以培养其探索真理的意识和情感,更能发展其创新精神和能力。 举一个例子来说明:下列是某月的月历:
|
| 1
| 2
| 3
| 4
| 5
| 6
| 7
| 8
| 9
| 10
| 11
| 12
| 13
| 14
| 15
| 16
| 17
| 18
| 19
| 20
| 21
| 22
| 23
| 24
| 25
| 26
| 27
| 28
| 29
| 30
| 31
|
|
|
提问:阴影方框中的9个数之和与该方框正中间的数有什么关系?
学生立即会计算,结果表明这9数之和是正中间的数15的9倍。
再问若将阴影方框移至如下图,又如何?
|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|
|
通过计算,学生会得出相同的结论,于是,他们就会好奇地猜想:这种关系对其它方框也成立吗?“好奇心”会驱使他们去尝试用代数方法进行证明:设中间的数为a,则阴影方框中的9个数分别为:
a-8 | a-7 | a-6 | a-1 | a | a+1 | a+6 | a+7 | a+8 |
求出此9数之和为:(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a
正好就是正中间的数a的9倍!“好奇心”进一步驱使他们思考:这种关系对任何一个月的月历都成立吗?答案是肯定的!同时,“好奇心”继续推动他们进一步猜想:如果阴影方框里的数是4个,是否又有什么规律可言呢?16个呢?25个(将月历31后面的数继续下去)呢?等等。当他们分别得出结论以后,会惊喜地发现:奇、偶数得出不同的规律!奇数时,几个数之和就是中间数的几倍;偶数时,对角线上的数之和相等。通过思考,还会发现一些其它规律。再推而广之,若将此表每行7数(第一行可少)无限列下去,此规律是否都满足呢?若由每行7数改成每行5个、6个、8个、9个……是否又有什么规律可寻呢?“好奇心”促使同学们不断地探究下去,不断地深入,不断地发现,不断地创新!
新加坡在教育上的口号是:“会思考的学校,爱学习的国家”,所谓“会思考”,即是自己发现问题,然后主动去积极思考问题,力求自己解决问题。“好奇心”正能使人做到这一点!而“好胜心”只能使人去思考别人提出的问题,这种思考具有一定的被动性,很难创新;只有“好奇心”才能催人积极主动地去思维、去发现、去创造,长此以往,何愁没有创新 |