指导学生写出已知、求证、证明过程(抽两人板演,教师点评,规范证明格式)。
教师应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA.
∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
(三)议一议、开阔思野:
‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
让学生讲解自己的思维过程和解法。
设计意图:教师要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。学生不仅验证了自己的猜想,而且也充分第表明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依赖,相互支持的整体。
三、巩固新知,拓展应用
例:如图C岛在A岛的北偏东50 °方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向,从C岛看A,B两岛的视角∠ ACB是多少度?
设计问题:
1.A、B、C三点是否在同一直线上?
它们能否形成三角形?
2.确定东西南北方向,再者如何理解C岛在A岛的北偏东50 °, C岛在B岛的北偏西40 °, B岛在A岛的北偏东80 °?
3.由已知条件能推算出 ∠ CAB吗?由AD∥BE,图中的同位角、内错角或同旁内角有什么特点?能否利用这些条件推算出∠ ABC呢?
解: ∠ CAB= ∠ BAD- ∠ CAD=80 °-50 °
由AD ∥ BE,可得∠ BAD+ ∠ ABE=180°.
所以∠ ABE=180°- ∠ BAD=180°-80°=100°
∠ABC= ∠ ABE- ∠ EBC=100°-40°=60°
在ABC中,
∠ ACB=180°- ∠ ABC- ∠ CAB=180°-60°-30°=90°.
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。难易程度拾级而上,为学生把知识转化为能力起到了积极的促进作用。
四、课外延伸、思维拓展
名称 三角形 四边形 五边形 六边形
有几个三角形 1
内角和 180°
如果要求10边形的内角和,你会求吗?你有什么发现?
设计意图:三角形的内角和是180度的验证,使得学生的发现得到肯定,提高了学生的学习兴趣。由探索三角形的内角和拓展到探索多边形的内角和,又延续了学生的兴趣。整节课都在不断培养学生的学习兴趣。
五、小结:
通过今天的学习,你有什么样的收获? 这节课同学们的学习热情很高,收获不少。但数学的奥妙是无穷的。还等着你们在以后的学习中去发现、去探索。
六、作业布置:
课本241页数学理解1、2、3
七、教学反思
在教学中采用小组讨论、小组竞赛、板演等形式,充分调动学生的主动性、积极性。特别是由拼图得出“三角形内角和是180°”的结论的过程中,教师鼓励学生尝试用多种方法来证明这个结论,开展小组竞赛,让学生积极思考,大胆发言,营造生动有趣、活泼和谐的课堂气氛。 |