绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 13448|回复: 1
打印 上一主题 下一主题

初中数学优秀教学设计《三角形的内角和》教学设计

[复制链接]
跳转到指定楼层
楼主
发表于 2013-10-12 23:14:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
初中数学优秀教学设计《三角形的内角和》教学设计
大悟县阳平镇中心初级中学  陈大海
教材分析:
教材先让学生动手操作,通过实际度量三个内角的内角和,计算它们的和。由于测量产生误差不容易作出正确结论,再引导学生用实验的方法探索规律。为使所得的结论具有普遍性,使学生信服,教材分别安排对直角三角形、锐角三角形和钝角三角形分别进行实验,再概括出一般结论。接着说明这一结论的应用。
设计理念:
本节课的教学设计让学生经历了量,撕,折等一系列活动,从而得出“三角形的内角和是180度”这一结论。学生通过操作和思考,真正经历有效的探究活动,让学生产生探究的需要;给学生空间,让他们自主探究,让学生充分经历提出猜想,进行实验验证的学习过程。在这一过程中,学生从自己已有的经验出发,积极的进行操作,测量,计算,并对自己的结论进行思考,分析,认真倾听其他同学的操作结果和想法,逐步形成了结论,为今后的学习打下了坚实的基础。
教学目标:
知识与技能:
在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
过程与方法:
通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
情感、态度与价值观:
在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
教学重点:让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程;知道三角形的内角和是180度并且能应用。
教学难点:三角形内角和是180度的探索和验证过程。
教学准备:多媒体课件、量角器、剪刀、各类三角形。
教学过程:
一、创设情境,激发兴趣
图形王国的国王有两名位大将一位叫“大三角形”,一位叫“小三角形”,有一天他们为一点儿小事吵了起来,大三角形吼道:“小家伙整天和我吵,你说我什么不比你大?”。小三角形不服气地说:“你的内角和就不比我的大”。大三角形理直气壮地说:“我的内角和肯定比你大。”两人争执不休,这时国王回来了:听了他们的诉说,有点糊涂的说“什么是三角形的内角,什么是三角形的内角和?你们的内角和哪个大呢?(板书:内角、内角和)”同学们:你们知道什么是三角形的内角,什么是内角和吗?
设计意图:这样设计主要是一则童话故事引入,利用学生生活经验,寻找学生最易接受问题的突破点,避免纯数学问题的枯燥,调动学生的视觉,激发学生的学习兴趣,提高学生学习主动参与的积极性。
二、探究新知
(一)动手操作探索解法:
每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验。通过小组合作交流,讨论有几种拼合方法?
开展小组竞赛(看哪个小组发现多?说理清楚。),各小组派代表展示拼图,并说出理由。
学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线(学生讨论,教师点评),为书写证明过程做好铺垫。
设计意图:让学生看动手拼,使学生直觉感知三角形角的变化与内角和的关系,让学生产生需要,主动去探索,主动去解决问题,主动去证明,充分调动学生,让他们通过观察思考操作验证归纳的过程,主动获取知识,培养个人能力。让学生把自己的证明过程和课件展示的过程对照,这样可以规范学生的证明步骤过程,有利于学生养成良好的思维习惯。
(二)、探索解法
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2013-10-12 23:14:56 | 只看该作者
指导学生写出已知、求证、证明过程(抽两人板演,教师点评,规范证明格式)。
教师应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°

证明:作BC的延长线CD,过点C作射线CE∥BA.
        ∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)

(三)议一议、开阔思野:
‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
        ∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
让学生讲解自己的思维过程和解法。
设计意图:教师要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。学生不仅验证了自己的猜想,而且也充分第表明了给片面追求过程或者片面追求结果的教学行为以正确的引领,过程与结果是相互依赖,相互支持的整体。
三、巩固新知,拓展应用
例:如图C岛在A岛的北偏东50 °方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向,从C岛看A,B两岛的视角∠ ACB是多少度?

设计问题:  
1.A、B、C三点是否在同一直线上?
它们能否形成三角形?
2.确定东西南北方向,再者如何理解C岛在A岛的北偏东50 °, C岛在B岛的北偏西40 °, B岛在A岛的北偏东80 °?
3.由已知条件能推算出 ∠ CAB吗?由AD∥BE,图中的同位角、内错角或同旁内角有什么特点?能否利用这些条件推算出∠ ABC呢?
解: ∠ CAB= ∠ BAD- ∠ CAD=80 °-50 °
    由AD ∥ BE,可得∠ BAD+ ∠ ABE=180°.
所以∠ ABE=180°- ∠ BAD=180°-80°=100°
∠ABC= ∠ ABE- ∠ EBC=100°-40°=60°
在ABC中,
∠ ACB=180°- ∠ ABC- ∠ CAB=180°-60°-30°=90°.
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。难易程度拾级而上,为学生把知识转化为能力起到了积极的促进作用。
四、课外延伸、思维拓展         

名称        三角形        四边形        五边形        六边形
有几个三角形        1                       
内角和        180°                       
如果要求10边形的内角和,你会求吗?你有什么发现?
设计意图:三角形的内角和是180度的验证,使得学生的发现得到肯定,提高了学生的学习兴趣。由探索三角形的内角和拓展到探索多边形的内角和,又延续了学生的兴趣。整节课都在不断培养学生的学习兴趣。
五、小结:
通过今天的学习,你有什么样的收获? 这节课同学们的学习热情很高,收获不少。但数学的奥妙是无穷的。还等着你们在以后的学习中去发现、去探索。
六、作业布置:
课本241页数学理解1、2、3
七、教学反思
在教学中采用小组讨论、小组竞赛、板演等形式,充分调动学生的主动性、积极性。特别是由拼图得出“三角形内角和是180°”的结论的过程中,教师鼓励学生尝试用多种方法来证明这个结论,开展小组竞赛,让学生积极思考,大胆发言,营造生动有趣、活泼和谐的课堂气氛。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-25 12:30

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表