|
板凳
楼主 |
发表于 2009-7-15 07:23:00
|
只看该作者
4.巧用反例,突破难点。
退位减法,难点是哪一位不够减,就从前一位退一当十再减,学生很容易发生习惯性退一或退一后仍用原数相减等问题。为了突破这个难点,可以构思、设置这样的一组反例,故意让学生找一个正确的竖式(都是错例,然后由学生诊断,再集体订正):
这种情况下,学生通常会因为自身对“退位减法”理解不深而真的找出一个认为正确的题目,三题都会有人误认为是对的。这时,我并不急于一一纠错,而是让学生自己去验证。当结果都错时,他们有的已知其所以然,有的还感疑惑,强烈想知道自己错在哪儿了,此时教师不说学生也会相互指正了。找“错”的过程,学生启然会去辨别,去思考该怎样退位的问题,三个反例的三个方面能使学生更深刻、全面的理解退位减法的本质,熟悉计算的方法。巧用反例,引发学生积极思维,在逐步的矛盾冲突中使学生对退位减法掌握趋于全面。
5.巧用反例,打破消极思维定势。
教学“比多比少”的实际问题,学生往往见“多”就加,见“少”就减,形成思维定势。在对比教学中,我们可以用实物或画示意图强化数量关系的分析,使学生理解为什么要加,为什么要减。破除学生“见多就加”的思维定势,为引导学生从分析数量关系人手来解决实际问题创造条件。如果教师能在习题教学中有意识地对学生进行常见反例的识别训练,对提高学生的思维能力和辨别能力,使之从全面地分析数量关系人手,
正确判断算法无疑是有帮助的。
在“整数加减法简便运算”教学中,由于学生对“先乘除,后加减”的误解,或者由于对简算题的某些数据特别敏感,只要看到题中的数据稍有联系,常常不管三七二十一就急于简算。在复习课上我出了这样两道诱误题:①2000÷125×8;②1/4×4÷1/4× 4让同学们练习,不出所料,很多同学贪图简便很快就得出了两题答案分别是2和1。随即我让人把过程板书于黑板,这下引来了争议,于是我便抓住契机,让他们讨论准是谁非,理由是什么?经过探讨争辩,大家得出了一致的结论:原来是顺序弄错了,进而我又让学生们把题①中的“×”改成“÷”,把题②中“÷”前后的14×4都加上小括号,这样成了两条简算题,同时也得出了原题的正确结果。在整个过程中同学们通过计算讨论,弄懂了做计算题也需认真审题,不能轻易“见宝就押”。
数学教学不仅应从正面讲清概念,性质,法则,公式等基础知识,认清知识的正面形态;还应从反面诱导学生弄清易于混淆和失误之处,使之在反例的“牛痘”接种下,增强认知的免疫功能才能牢固掌握知识,加深对数学的理解。
小学数学课堂教学,适时地引进一些反例,恰当地引导学生从反例中构建,能促使学生在不断辩证中深化、完善数学概念的认知结构,提高学生分析理解知识以及正确判断、运用的能力。 |
|