|
沙发
楼主 |
发表于 2009-5-28 07:38:00
|
只看该作者
【且行且思】
以上案例中,教师将思维视角伸向了远方。她通过三角板的拼摆,成功地揭示了四边形、五边形、六边形等多边形内角和的计算规律。这一设计堪称绝妙,主要有以下几方面优势:
1.情境趋于完整
约翰.杜威说:“学生在思维之前,必须有一情境,有一个大的范围广泛的情境。在这个情境中,思维能够充分地从一点到另一点做连续的活动。”本案例中,教师正是将求多边形的内角和置于一个开放情境中,先将两个同样的三角板拼成一个大三角形,并让学生说出大三角形的内角和。接着,教师继续引导学生借助拼摆图,顺利求出了四边形、五边形及六边形的内角和。下课时,教师又设计了一个悬念:“如果继续往后拼成七边形、八边形……”整个情境前后连贯,具有很强的整体感。学生在这个系统而完整的情境中,思维一步步地走向深入。
2.思维走向深刻
我们认为,好的问题会成为继续讨论的原动力。本课例中,教师的提问沿着一条清晰的主线,将学生的思维逐渐引向问题的本质。当学生说出大三角形的内角和是180度后,教师并未就此罢手,而是继续追问理由,让学生清楚地看到了两个直角的隐身之处。这样,学生便形成了正确的观念:三角形无论大小,内角和都是180度。接着,在学生说出四边形内角和是360度时,教师也引导学生说明理由,使学生认识到两个三角板拼成四边形时,每个角都用上了。在学生说出五边形的内角和时,教师又问:“连起来看,你发现了什么?”学生深刻认识到四边形、五边形的内角和分别是三角形内角和的2倍、3倍。于是,教师又引导学生遵循这一规律,求出了六边形的内角和。课尾,教师又引导学生继续去验证自己的猜想。开放而延续的问题,激起了一个个思维漩涡。
3.模式初具雏形
教师借助三角板的拼摆,使学生直观感知到了多边形可以分割为若干个三角形。同时,随着思考的逐步深入,学生已清晰地意识到:四边形可以分割成2个三角形,它的内角和就是2×180°;五边形可以分割为3个三角形,它的内角和就是3×180°;六边形可以分割为4个三角形,它的内角和就是4×180°……至此,教师虽未明说,但已初步建立了多边形内角和的计算模型,即:n边形可以分割为(n-2)个三角形,它的内角和就是(n-2)×180°。虽然教师没有将此抽象到公式的程度,但其思想已孕伏其中。假以时日,当学生再接触到这一类问题,他们应该能轻松概括出一般算法。
约翰.杜威指出:“身体的生长是由于食物的消化和吸收,同样,思维的生长是由于教材的合乎逻辑的组织。”因此,思维是一种能力,它能把特定事物所引起的特定暗示,贯彻到底并构成整体。当我们给思维以生长的力量时,我们的课堂会显出生命的活力! |
|