|
沙发
楼主 |
发表于 2009-4-20 07:36:00
|
只看该作者
二、在对比中逐步完善知识结构
从某种程度上可以说,计算的学习过程不仅仅是计算技能不断丰富提高的过程,同时也是学生关于计算的知识结构不断丰富和完善的过程。采取一定的策略使学生自主完善、优化知识结构,是计算教学中一个不可或缺的环节。
1. 在题组的对比中拓展知识结构。
让学生在对一组相互关联的题目的计算实践中,进一步拓展知识结构,是新教材一个特色。在本单元中,教材几乎在每一个“想想做做”中都安排了相应的题组练习。在第31页第1题、第2题安排了两位数乘一位数与相应的两位数乘整十数的对比练习;在第34页第2题安排了估算与精确计算的对比练习;在第36页第10题安排了一步计算与相应简便的两步计算的对比练习……,这些精心安排的题组练习,为学生拓展知识结构提供了依托。在教学中,一方面,我们要充分利用好这些题组练习,引导学生在对比中思考,通过对异同点的分析和感受,进一步拓展学生的知识结构;另一方面,我们在教学环节的安排上也要注意沟通前后联系,让学生进行适当的比较。
2. 在算法的对比中优化知识结构。
由呈现单一算法向算法多样化的转变,其意义并不仅仅是激活学生的思维,为了产生多种算法而产生多种算法,其价值还体现在多种算法的对比中,学生可以构建更为优化的知识结构。以第32页两位数乘两位数的笔算为例,教学中并不急于探讨竖式的写法,在学生尝试了多种解决问题的方法后,由这些方法出发再来探讨竖式计算,其一,有繁琐方法的映衬,竖式计算显得更为简洁;其二,基于分配律的算法有助于学生理解竖式的书写规则。这样,学生对竖式的理解无疑更为深刻。
三、 在计算实践中注意形成习惯
两位数乘两位数与学生已经学习的计算相比,复杂程度提高了很多,能够正确的进行计算,良好的计算习惯是个重要保证。而事实上,复杂的计算也是帮助学生形成良好习惯的一个契机。
1. 将估算、口算、笔算、验算融合成一个完整的计算过程。
过去,在更多的时候,我们往往容易将估算、口算、笔算、演算等看成一个个孤立的计算形式。题目不提演算的要求,学生不会演算;只有在题目要求回答大约是多少时,才会想到估算;一段时间的竖式计算学习后,学生再遇到题目时,不管是否可以口算,总是习惯的马上在草稿纸上列竖式……,这一系列问题的本源就在于我们在教学中就没有将这些计算形式视为一个整体。教材中第32页例题所呈现的第一个算法就是一个估算,估算也可以看作一种有根据的猜测,而猜测往往是我们探索一个问题的开始。估算并不是在教材中要求我们估算时才用到,即使在需要精确结果的计算中,估算也会起一定的监控检验作用。用计算来解决一个问题,首先需要我们根据题目的特点作出判断,再根据需要将估算、口算、笔算有机组合,当然,为了确认结果的正确性,最后的验算是必须的。由此可见,估算、口算、笔算、验算应该是一个整体,在教学中,我们更应该让学生通过不断的计算实践体验到各种计算形式的密不可分,并逐渐融入自己的计算习惯中。
2. 培养学生细心计算的习惯。
两位数乘两位数的竖式计算,既要一步一步口算,又要将每次口算的结果写在相应的位置;既要算乘,又要算加;计算过程中还有进位问题。因此,一定要培养学生细心计算的习惯。首先,要让学生养成良好的书写习惯,书写一要清晰,二要有条理。其次,还要让学生理清计算的各个环节,在计算过程中有效地对各环节实施自我监控,特别是更加关注自己易出错的环节。
让学生在计算实践中形成良好的习惯,其意义并不仅仅是为了提高计算的正确率,良好的习惯同样有助于学生学习其他数学知识乃至其他学科知识。
|
|