绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 7637|回复: 1
打印 上一主题 下一主题

“勾股定理的应用”教学设计

[复制链接]
跳转到指定楼层
楼主
发表于 2009-4-2 09:36:00 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
四川省乐山市市中区悦来中学  黄世桥
  
八年级下(人教版)§18.1勾股定理应用之一
目标
重点
难点
1、知识与方法目标:通过对一些典型题目的思考、练习,能正确、熟练的进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
  3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
勾股定理的应用
勾股定理的灵活应用。
内容
方法
八年级下(人教版)§18.1勾股定理的应用之一
讲练结合

课前复习
师:勾股定理的内容是什么?
生:勾股定理 直角三角形两直角边的平方和等于斜边的平方.
师:这个定理为什么是两直角边的平方和呢?
生:斜边是最长边,肯定是两个直角边的平方和等于斜边的平方,否则不正确的。
师:是这样的。在RtΔABC中,∠C=90°,有:AC2+BC2=AB2,勾股定理揭示了直角三角形三边之间的关系。
今天我们来看看这个定理的应用。
新课过程
分析:

师:上面的探究,先请大家思考如何做?
(留几分钟的时间给学生思考)
师:看到这个题让我们想起古代一个笑话,说有一个人拿一根杆子进城,横着拿,不能进,竖着拿,也不能进,干脆将其折断,才解决了问题,相信同学们不会这样做。
(我略带夸张的比划、语气,学生笑声一片,有知道这个故事的,抢在我的前面说,学生欣欣然,我观察课堂气氛比较轻松,这也正是我所希望氛围,在这样的情况下,学生更容易掌握知识)
师:这里木板横着不能进,竖着不能进,只能试试将木板斜着顺进去。
师:应该比较什么?
李冬:这是一块薄木板,比较AC的长度,是否大于2.2就可以了。
师:李冬说的是正确的。请大家算出来,可以使用计算器。
解:在RtΔABC中,由题意有:
  AC=≈2.236
  ∵AC大于木板的宽
  ∴薄木板能从门框通过。
学生进行练习:
1、在Rt△ABC中,AB=c,BC=a,AC=b, ∠B=90゜.
①已知a=5,b=12,求c;
②已知a=20,c=29,求b
(请大家画出图来,注意不要简单机械的套a2+b2=c2,要根据本质来看问题)
2、如果一个直角三角形的两条边长分别是6厘米和8厘米,那么这个三角形的周长是多少厘米?
师:对第二问有什么想法?
生:分情况进行讨论。
师:具体说说分几种情况讨论?
生:①3cm和4cm分别是直角边;②4cm是斜边,3cm是直角边。
师:呵呵,你们漏了一种情况,还有3cm是斜边,4cm是直角边的这种情况。
众生(顿感机会难得,能有一次战胜老师的机会哪能放过):啊!斜边应该大于直角边的。这种情况是不可能的。
师:你们是对的,请把这题计算出来。
(学生情绪高涨,为自己的胜利而高兴)
(这样处理对有的学生来说,印象深刻,让每一个地方都明白无误)
解:①当6cm和8cm分别为两直角边时;
  斜边==10
  ∴周长为:6+8+10=24cm
②当6cm为一直角边,8cm是斜边时,
  另一直角边= =2
  周长为:6+8+2=14+2

师:如图,看上面的探究2。

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2009-4-2 09:37:00 | 只看该作者
分析:
师:请大家思考,该如何去做?
陈晓玲:运用勾股定理,已知AB、BO,算出AO的长度,又∵A点下滑了0.4米,再算出OC的长度,再利用勾股定理算出OD的长度即可,最后算出BD的长度就能知道了。
师:这个思路是非常正确的。请大家写出过程。
有生言:是0.4米。
师:猜是0.4米,就是想当然了,算出来看看,是不是与你的猜测一样。
(周飞洋在黑板上来做)
解:由题意有:∠O=90°,在RtΔABO中
  ∴AO==2.4(米)
  又∵下滑了0.4米
  ∴OC=2.0米
在RtΔODC中
∴OD==1.5(米)
∴外移BD=0.8米
答:梯足将外移0.8米。
师:这与有的同学猜测的答案一样吗?
生:不一样。
师:做题应该是老老实实,不应该想当然的。
例3 再来看一道古代名题:
这是一道成书于公元前一世纪,距今约两千多年前的,《九章算术》中记录的一道古代趣题:
原题:“今有池,方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐,问水深、葭长各几何?”
师:谁来给大家说一说:“葭”如何读?并请解释是什么意思?
黄尚剑:葭(jiā),是芦苇的意思。
师:这是正确的。
师:谁来翻译?
吴智勇:现在有一个正方形的池子,一株芦苇长在水中央,露出水面的部分为一尺,拉芦苇到岸边,刚好与搭在岸上……
师:听了吴智勇的翻译,我觉得“适与岸齐”翻译得不达意,应该理解为芦苇与水面与岸的交接线的中点上。
宋婷等:老师,我也认为是刚好到岸边,“齐”就是这个意思的。
师:这是字表面的意思,古人的精炼给我们今天的理解带来了困难,如果照同学们的翻译,这题就无解了,这理的理解应该是芦苇与水面同岸的交接线的中点上,而且还要求不左偏右倒。
(与学生进行争论,能够让师生双方对这个问题都有更深刻的印象,我是欢迎学生们发表自己的见解)
师:正方形的池子,如何理解?
生:指长、宽、高都相等。
师:呵呵!照你们的看法,应该说成是正方体,而不应该是正方形了?再想想,池子的下方是什么形?
生:照这样说来,下面是其它形状也可以啊!
师:我也这样认为,再来具体的说说正方形池子指什么?
生:仅指池口是正方形。
师:是这样的。(用粉笔盒口演示给学生看)

有生:一丈10尺是指什么?
师:我也正想问这个问题呢,谁能来解答?
生:指AD的长度。
师:能指BC的长度吗?
生:不能,刚说的其下方是不能确定的。
我们整理翻译一下:

“现在有一个贮满水的正方形池子,池子的中央长着一株芦苇,水池的边长为10尺,芦苇露出水面1尺。若将芦苇拉到岸边,刚好能达到水池岸与水面的交接线的中点上。请求出水深与芦苇的长各有多少尺?
师:请大家思考如何进行计算?
(留几分钟的时间给学生思考)
师:刚才有一部分同学已经做出来了,但还有约一半的同学还未能做出来。
师:没做出来的同学,请思考你是不是遇到了EF与FD两个未知数啊,一是想想1尺有什么用;二是如何把两个未知数变成一个未知数,当然也可以多列一个方程。
(再等一等学生,留时间让他们做出来,这里等一等所花费的时间,对中等与中等偏下的同学是极为有利的,这点时间的付出会得到超值回报的)
解:由题意有:DE=5尺,DF=FE+1。
设EF=x尺,则DF=(x+1)尺
由勾股定理有:
x2+52=(x+1)2
解之得:x=12
答:水深12尺,芦苇长13尺。
生:这题的关键是理解题意。
师:看来还很会点评嘛,属于当领导的哦!(开个善意的玩笑,教室中一片温馨的笑声)。审题,弄清题意也是我们做题的首要的关键的一环,用同学们的总结来说,以后遇到难题不要怕,要敢于深入进去,弄清情景。

例4 如图,校园内有两棵树,相距12米,一棵树高16米,另一棵树高11米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞多少米?
师:请思考如何做?至少怎么理解?
生:走直线就短,用勾股定理就可以了,还要做辅助线。
师:是啊,要连哪些线?
生:连结两树顶得AB,过B作高树的垂线就可以了。
师:请解出来。

解:由题意有:BC=12米,AC=16-11=5米。
在RtΔABC中
AB==13
答:小鸟至少要飞13米。
师:这题的计算也不难,关键也是理解题意。
作业:完成书(人教版)P77页1,P78页2、3
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-11 02:28

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表