绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 5962|回复: 1
打印 上一主题 下一主题

2013年春新版七年级数学下册第三章三角形教学案导学案

[复制链接]
跳转到指定楼层
楼主
发表于 2013-2-23 16:45:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
2013年春新版七年级数学下册第三章三角形教学案导学案
3.4  用尺规作三角形
学习目标:1、了解尺规作图的含义及其历史背景。
2、会作一个角等于已知角,并了解作法理由。
3、在分别给出的两角夹边、两边夹角和三边的条件下,能够利用尺规作三角形。
4、作已知线段的垂直平分线,并了解作法理由。
5、能结合三角形全等的条件与同伴交流作图过程和结果的合理性。
学习重点:基本尺规作图
学习难点:作一个角等于已知角,作已知线段的垂直平分线的作法分析过程。
四、学习设计:
(一)预习准备
(1)预习书169~172页
(2)学具:圆规、直尺
(3)预习作业:
已知:a
求作:AB,使AB=a

已知:∠
求作:∠AOB,使∠AOB=∠  
(二)学习过程:
1.作一个三角形与已知三角形全等
(1)已知三角形的两边及其夹角,求作这个三角形.
已知:线段a,c,∠α。
求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α。  

作法与过程:
1.作一条线段BC=a,
2.以B为顶点,BC为一边,作角∠DBC=∠a;
3.在射线BD上截取线段BA=c;
3.连接AC,ΔABC就是所求作的三角形。
给出示范和作法,让学生模仿,教师可以在黑板上做一次示范,让学生跟着一起操作,并在画完图后,让学生再自己操作一遍.而在下面的作图中,就让学生小组内讨论、交流,通过集体的力量完成,教师再给以一定的指导。
(2)已知三角形的两角及其夹边,求作这个三角形.
已知:线段∠α,∠β,线段c 。
求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c。
作法:1.作____________=∠α;
      2.在射线______上截取线段_________=c;
      3.以______为顶点,以_________为一边,作∠______=∠β,________
交_______于点_______.ΔABC就是所求作的三角形.
先让学生独立思考,探索作图的过程,对可以自己作出图形的学生,要求他们在小组内交流,用自己的语言表述作图过程。教师要注意提醒学生在作图过程中,是以哪个点为圆心,什么长度为半径作图。
(3)已知三角形的三边,求作这个三角形.
已知:线段a,b,c。
求作:ΔABC,使得AB=c,AC=b,BC=a。  
在完成三个作图后,同学们要比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等。在此基础上,利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性。
3.5 利用三角形全等测距离
一、学习目标:1、能利用三角形的全等解决实际问题,体会数学与实际生活的联系;
2、能在解决问题的过程中进行有条理的思考和表达。
二、学习重点:能利用三角形的全等解决实际问题。
三、学习难点:能在解决问题的过程中进行有条理的思考和表达。
四、学习设计:
(一)预习准备
(1)预习书173~174页
(2)回顾:证明三角形全等的方法有哪些?
(3)预习作业:
①全等三角形的性质:两三角形全等,对应边       ,对应角      
②如图;△ADC≌△CBA,那么 ,  

③如图;△ABD≌△ACE,那么 ,
(二)学习过程:
一、探索练习:
如图:A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长。他叔叔帮他出了一个这样的主意:
先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度;
(1) DE=AB吗?请说明理由

(2) 如果DE的长度是8m,则AB的长度是多少?
变式练习:
1. 如图,山脚下有A、B两点,要测出A、B两点的距离。
(1)在地上取一个可以直接到达A、B点的点O,连接AO并延长到C,使AO=CO,请你能完成右边的图形。

                                               
(2) 说明你是如何求AB的距离。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

沙发
 楼主| 发表于 2013-2-23 16:46:28 | 只看该作者

2.如图,要量河两岸相对两点A、B的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在一条直线上,这时测得DE的长就是AB的长,试说明理由。

3.如图,A,B两点分别位于一个池塘的两端,完成下图并求出A、B的距离

拓展练习:
如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
第三章  三角形回顾与思考
一、学习目标
(1) 进一步了解全等图形、全等三角形的概念和性质;
(2) 能够辨认全等三角形中对应的元素;
(3) 会正确使用全等符号标注两个三角形全等;
(4) 能灵活运用“SSS”、“SAS”、“ASA”、“AAS” 、“HL”来判定三角形全等;
(5) 会用三角形全等的条件推理和计算有关问题。
二、学习重难点
     重点:能够辨认全等三角形中对应的元素; 灵活运用“SSS”、“SAS”、“ASA”、“AAS” 、“HL”来判定三角形全等
     难点:灵活运用“SSS”、“SAS”、“ASA”、“AAS” 、“HL”来判定三角形全等。
三、学习过程
(一) 知识回顾
1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.
2、全等三角形的特征:大小相等,形状相同.
3、全等三角形的性质:全等三角形的对应边相等,对应角相等;
全等三角形周长相等,面积相等.
4、三角形全等的判定:重叠法(定义法),SAS,ASA,AAS,SSS ,HL(RT△)(请根据判定方法依次分别画图(图上标出标记),写出几何符号推理语言).
注意:(1)“分别对应相等”是关键;
     (2)两边及其中一边的对角分别对应相等的两个三角形不一定全等;
     (3)三角分别对应相等的两个三角形不一定全等.
5、要证明两条线段或两个角相等,最常用的方法之一是利用全等三角形去证明,因此,首先筛选或构造恰当的三角形,使所要证明的线段或角分别为这两个三角形的对应元素,然后证明这两个三角形全等.
基础练习
1、选择
(1)在 和 中, , ,补充条件后,仍不一定能保证   ,这个补充条件是(   )
(A)  , (B)  ,  (C)  , (D) .
(2)下列条件能判定△ABC≌△DEF的一组是       (      )
(A)∠A=∠D, ∠C=∠F, AC=DF    ,(B)AB=DE, BC=EF,  ∠A=∠D ,
(C)∠A=∠D, ∠B=∠E,  ∠C=∠F  ,(D)AB=DE,△ABC的周长等于△DEF的周长.
(3)判定两个三角形全等必不可少的条件是(   )
(A)至少有一边对应相等,(B)至少有一角对应相等,
(C)至少有两边对应相等,(D)至少有两角对应相等.
(4)下列条件中不能判断两个三角形全等的是(    )
(A)有两边和它们的夹角对应相等,     (B)有两边和其中一边的对角对应相等,
(C)有两角和它们的夹边对应相等,    (D)有两角和其中一角的对边对应相等.
(5)下列结论正确的是(      )
(A)有两个锐角相等的两个直角三角形全等; (B)一条斜边对应相等的两个直角三角形全等;
(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.
2、填空
(1)如图1,已知△ABC和△DCB中,AB=DC,请补充一个条件   ,使△ABC≌ △DCB.
(2)如图2,已知∠C= ∠D,请补充一个条件          ,使△ABC≌ △ABD.
(3)如图3,已知∠1= ∠2,请补充一个条件         ,使△ABC≌ △CDA.  
(4)如图4,已知∠B= ∠E,请补充一个条件       ,使△ABC≌ △AED.

3、解答题
(1)如图,将一张透明的平行四边形塑片沿对角线剪开.
①摆成如图1,A、B、C、D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:BE=CF.
②如果将BD沿着AD边的方向平行移动,如图2,B点与C点重合时,如图3,B点在C点右侧时,其余条件不变,结论是否仍成立,如果成立,请予证明;如果不成立,请说明理由.
(2)如图(1),AB⊥BD,ED⊥BD,AB=CD,BC=DE,求证:AC⊥CE.若将CD沿CB方向平移得到图(2)(3)(4)(5)⑹的情形,其余条件不变,结论AC1⊥C2E还成立吗?请说明理由.
  

拓展延伸
1、如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,
(1)G是EF的中点吗?请证明你的结论.
(2)若将 DEC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?


2、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同侧(如图①)且AD=CE,求证: .
(2)若BC在DE的两侧(如图②)其他条件不变,问:(1)中的结论是否仍然成立?若是请予证明,若不是请说明理由.

3、(1)如图(1),已知AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由.
(2)若将过O点的直线旋转至图(2)、(3)的情况时,其他条件不变,那么图(1)中∠1与∠2的关系还成立吗?请说明理由.

4、已知∠AOB=900,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA、OB(或它们的反向延长线)相交于点D、E.
  如图1,当CD OA于D,CE OB于E,易证:CD=CE
  当三角板绕点C旋转到CD与OA不垂直时,在图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-10 16:02

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表