绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

2013年新人教版初一七年级下册全册数学教案教学设计

[复制链接]
22#
 楼主| 发表于 2013-2-23 00:43:43 | 只看该作者

例:甲运输公司决定分别运给A市苹果10吨、B市苹果8吨,但现在仅有12吨苹果,还需从乙运输公司调运6吨,经协商,从甲运输公司运1吨苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1吨苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?
练习:
1、        某山区有23名中、小学生因贫困失学要捐助。资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元。某校学生积极捐款,初中各年级学生捐款数额与用其捐助贫困中学生和小学生的部分情况如下表:
        捐款数额
(元)        捐助贫困中学生人数(名)        捐助贫困小学生人数(名)
初一年级        4000        2        4
初二年级        4200        3        3
初三年级        7400               
(1)        求a、b的值。
(2)        初三学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入上表中(不必写出计算过程)。
2、        某公园的门票价格如下表所示:
购票人数        1人~50人        51~100人        100人以上
票价        10元/人        8元/人        5元/人
某校八年级甲、乙两个班共100多人去该公园举行游园联欢活动,其中甲班有50多人,乙班不足50人。如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要付515元。问:甲、乙两个班分别有多少人?
作业:教材108页5、7。
8.4 三元一次方程组解法举例
教学目标:1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.
3.掌握解三元一次方程组过程中化三元为二元的思路.
教学重点:        (1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会“消元”的基本思想.
教学难点:针对方程组的特点,灵活使用代入法、加减法等重要方法.
教学过程:
一、创设情景,导入新课
    前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。实际上,有不少问题中会含有更多的未知数,对于这样的问题,我们将如何来解决呢?
【引例】小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
提出问题:1.题目中有几个条件?2.问题中有几个未知量?3.根据等量关系你能列出方程组吗?
【列表分析】   (师生共同完成)
(三个量关系)         每张面值    ×    张数     =    钱数
        1元        x        x
        2元        y        2y
        5元        z        5z
合   计                12        22
注        1元纸币的数量是2元纸币数量的4倍,即x=4y






解:(学生叙述个人想法,教师板书)
设1元,2元,5元的张数为x张,y张,z张.
    根据题意列方程组为:
【得出定义】   (师生共同总结概括)
这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
二、探究三元一次方程组的解法
【解法探究】怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)
例1 .解方程组
分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.
分析2:方程③是关于x的表达式,确定“消x”的目标.
【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:
类型一:有表达式,用代入法.
针对上面的例题进而分析,例1中方程③中缺z,因此利用①、②消z,可达到消元构成二元一次方程组的目的.
根据方程组的特点,由学生归纳出此类方程组
类型二:缺某元,消某元.
教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.
三、课堂小结
1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.
    即三元一次方程组   二元一次方程组  一元一次方程
    2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.
四、布置作业
1.        解方程组  你能有多少种方法求解它?
本题方法灵活多样,有利于学生广开思路进行解法探究。
2.        教材114页练习1(1),2;习题8.4—1.
第九章不等式与不等式组
9.1.1不等式及其解集
教学目标1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
教学重点:建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程
教学难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
教学过程
1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?
2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?
探究新知
回复

使用道具 举报

23#
 楼主| 发表于 2013-2-23 00:43:47 | 只看该作者

(一)不等式、一元一次不等式的概念
1、        在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。
2、下列式子中哪些是不等式?
(1)a+b=b+a(2)-3>-5(3)x≠l(4)x十3>6(5)2m<n(6)2x-3
上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.
3、小组交流:说说生活中的不等关系.
分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.
(二)不等式的解、不等式的解集
问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?
问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?
问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解.刚才同学们所说的这些数,哪些是不等式 >50的解?
问题4,数中哪些是不等式 >50的解:
76,73,79,80,74.9,75.1,90,60
你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.
1、        巩固新知下列哪些是不等式x+3>6的解?哪些不是?
-4,-2.5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0
拓广探索:比较分析对于问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x台,得方程
若设今年购买计算机x台,得方程   
解决问题某开山工程正在进行爆破作业.已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒4米.为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?
总结归纳:1、不等式与一元一次不等式的概念;
2、不等式的解与不等式的解集;3、不等式的解集在数轴上的表示.
布置作业 教科书第128页习题9.1第1、2题
9.1.2不等式的性质(一)
教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;
2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.
教学重点:理解并掌握不等式的性质。
教学难点:正确运用不等式的性质。
教学过程(师生活动)
提出问题:教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:
1、天平被调整到什么状态?
2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?
3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?
4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?
探究新知1、用“>”或“<”填空.
(1)-1<3-1+23+2-1-33-3                (2)5>35+a3+a5-a3-a
(3)6>26×52×56×(-5)2×(-5)(4)-2<3(-2)×63×6      (-2)×(-6)3×(一6)
(5)-4>-6(-4)÷2(-6)÷2                                (-4)十(-2)(-6)十(-2)
2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.
3、让学生充分发表“发现”,师生共同归纳得出:
不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.
不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.
4、你能说出不等式性质与等式性质的相同之处与不同之处吗?
探究新知
1.下列哪些是不等式x+3>6的解?哪些不是? -4,-2.5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0
巩固新知
1.判断
(1)∵a<b∴a-b<b-b(2)∵a<b∴ (3)∵a<b∴-2a<-2b(4)∵-2a>0∴a>0(5)∵-a<0∴a<3
2.填空:(1)∵2a>3a∴a是        数(2)∵ ∴a是        数(3)∵ax<a且x>1∴a是      数
3.根据下列已知条件,说出a与b的不等关系,并说明是根据不等式哪一条性质。
(1)a-3>b-3(2) (3)-4a>-4b
总结归纳:在学生自己总结的基础上,教师应强调两点:
1、等式性质与不等式性质的不同之处;2、在运用“不等式性质3"时应注意的问题.
布置作业:教科书第128页习题9.1第4、5题
9.1.2不等式的性质(二)
教学目标:1、会根据“不等式性质1"解简单的一元一次不等式,并能在数轴上表示其解集;
2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;
3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.
教学重点:根据“不等式性质1”正确地解一元一次不等式。
教学难点:根据“不等式性质1”正确地解一元一次不等式。
教学过程(师生活动)
提出问题:小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?
1、        若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?
2、        你会解这个不等式吗?请说说解的过程.
你能把这个不等式的解集在数轴上表示出来吗?
1、        探究新知分组探讨:对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发主。
2、        在学生充分讨论的基础上,师生共同归纳得出:
(1)        x应满足的关系是: ≤8
(2)        根据“不等式性质1”,在不等式的两边减去 ,得:x+ - ≤8- ,即x≤
(3)        这个不等式的解集在数轴上表示如下:
回复

使用道具 举报

24#
 楼主| 发表于 2013-2-23 00:43:53 | 只看该作者

我们在表示 的点上画实心圆点,意思是取值范围包括这个数。
3、        例题
解下列不等式,并在数轴上表示解集:(1)3x<2x+1(2)3-5x≥4-6x
师生共同探讨后得出:上述求解过程相当于由3x<
2x+1,得3x-2x<1;由3-5x≥4-6x,得-5x+6x≥4-3.这类似于解方程中的“移项”.可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.
最后由教师完整地板书解题过程.
巩固新知
1、解下列不等式,并在数轴上表示解集:(1)x+5>-1(2)4x<3x-5(3)8x-2<7x+3
2、用不等式表示下列语句并写出解集:(1)x与3的和不小于6;(2)y与1的差不大于0.
解决问题
1、某容器呈长方体形状,长5cm,宽3cm,高10cm.容器内原有水的高度为3cm。现准备继续向它注水.用Vcm,示新注入水的体积,写出V的取值范围。
2、三角形任意两边之差与第三边有着怎样的大小关系?
总结归纳:师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法。还明白了生活中的许多实际问题都是可以用不等式的知识去解决的。
布置作业:教科书第128页习题9.1第6题
9.1.2不等式的性质(3)
教学目标1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;
2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;
3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
教学重点:熟练并准确地解一元一次不等式。
教学难点:熟练并准确地解一元一次不等式。
教学过程(师生活动)
提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.
探究新知
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.
2、例题.
解下列不等式,并在数轴上表示解集:
(1) x≤50  (2)-4x<3 (3)7-3x≤10(4)2x-3<3x+1
分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1) (2)-8x<10
2、用不等式表示下列语句并写出解集:(1)x的3倍大于或等于1;(2)y的 的差不大于-2.
解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?
总结归纳:围绕以下几个问题:
1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨.
布置作业:教科书第128~129页 习题9.1第6题(3)(4)第10题。
9.2实际问题与一元一次不等式(一)
教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;
2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;
3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学重点:寻找实际问题中的不等关系,建立数学模型。
教学难点:弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
教学过程(师生活动)
提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.
2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:
(1)什么情况下,到甲商场购买更优惠?
(2)什么情况下,到乙商场购买更优惠?
(3)什么情况下,两个商场收费相同?
3、我们先来考虑方案:
设购买x台电脑,如果到甲商场购买更优惠.
问题1:如何列不等式?
问题2:如何解这个不等式?
在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x
去括号,得
去括号,得:6000+4500x-45004<4800x
移项且合并,得:-300x<1500
不等式两边同除以-300,得:x<5
答:购买5台以上电脑时,甲商场更优惠.
4、让学生自己完成方案(2)与方案(3),并汇报完成情况.
教师最后作适当点评.
解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?
问题1:这个问题比较复杂.你该从何入手考虑它呢?
问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?
回复

使用道具 举报

25#
 楼主| 发表于 2013-2-23 00:43:59 | 只看该作者

分组活动.先独立思考,再组内交流,然后各组汇报讨论结果.
最后教师总结分析:
1、如果累计购物不超过50元,则在两家商场购物花费是一样的;
2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。
3、如果累计购物超过100元,又有三种情况:
(1)什么情况下,在甲商场购物花费小?
(2)什么情况下,在乙商场购物花费小?
(3)什么情况下,在两家商场购物花费相同?
上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。
总结归纳:通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便.由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.
布置作业:教科书第134页习题9.2第1题(1)(2)第3题1、2。
9.2实际问题与一元一次不等式(2)
教学目标1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;
2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;
3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.
教学重点:列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。
教学难点:在实际问题中如何建立不等关系,并根据不等关系列出不等式。
教学过程(师生活动)
复习巩固解下列不等式:
①5x+54<x-1  ②2(1一3x)>3x+20  ③2(一3+x)<3(x+2)④(x+5)<3(x-5)-6
先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.
提出问题2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天?
解决问题:1、2002年北京空气质量良好的天数是多少?
2、用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?
3、2008年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?
4、怎样解不等式 在学生讨论后,教师做解题过程示范.
5、比较解这个不等式与解方程 的步骤,两者有什么不同吗?
在学生充分讨论的基础上,师生共同归纳得出:
解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x>a或x<a)的形式.
1、        巩固新知解下列不等式,并在数轴上表示解集:
(1) (2)
2、.当x或y满足什么条件时,下列关系成立?
(1)2(x+1)大于或等于1;                                (2)4x与7的和不小于6;
(3)y与1的差不大于2y与3的差;                (4)3y与7的和的 小于-2.
总结归纳:师生共同归纳解一元一次不等式的一般步骤,并与解一元一次方程再次进行比较。
布置作业:教科书第134页习题9.2第1题(3)~(6)、第3题(3)、(4)。
9.2实际问题与一元一次不等式(三)
教学目标1、会根据实际向题中的数量关系列不等式解决问题,熟练掌握一元一次不等式的解法;
2、初步感知实际问题对不等式解集的影响,培养学生的数学建模能力和分析问题、解决问题的能力;
3、通过开放性问题的设计,增强学生的创新意识和挑战自我意识,激发学习兴趣.
教学重点:根据题意,分析各类问题中的数量关系,会熟练列不等式解应用问题。
教学难点:把生活中的实际问题抽象为数学问题。
教学过程(师生活动)
引入新课前面我们结合实际问题,讨论了如何根据数量关系列不等式以及如何解不等式.在本节课上,我们将进一步探究如何用一元一次不等式解决生活中的一些实际问题.
提出问题某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小跃要想得分超过90分,他至少要答对多少道题?
探究新知1、与题目数量有什么关系?
2、跃答对了x道题,则如何用含有x的式子表示得分?
3、不等式应用题的解法.
教师在学生充分讨论的基础上板书解题过程,并指出:用不等式解应用问题时,必须注意对未知数的限制条件.
解决问题某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评活动.聘请A,B,C,D,E五位老师为评委,对演讲答辩进行评分;全班50位同学参与了民主测评.
规定:演讲答辩得分按“去掉一个最高分和一个最低分,再算平均分”的方法确定;民主测评得分一“好”票数×2分十“较好”票数×l分+“一般”票数×.综合得分一演讲答辩得分×(1-a)+民主测评得分×a(0≤a≤0.8
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
布置作业:教科书第134--135页习题9.2第2、7、8题
9.3一元一次不等式组(一)
教学目标1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;
回复

使用道具 举报

26#
 楼主| 发表于 2013-2-23 00:44:05 | 只看该作者

2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;
3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
教学重点:一元一次不等式组的解集和解法。
教学难点:一元一次不等式组解集的理解
教学过程(师生活动)
创设情境:提出问题小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为66千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克,
(1)从跷跷板的状况你可以概括出怎样的不等关系?
(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?
在讨论或议论中,列出不等式:
2x十x<72
2x十x+6>72
其中x同时满足以上两个不等式.
在议论的基础上,老师揭示:
一个量需要同时满足几个不等式的例子,在现实生活中还有很多.
类比探索引出新知问题2(教科书第137页)
现有两根木条a和b,a长10cm,b长3cm.如果再找一根木条。,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?
等式的性质1。
如果设木条长xcm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x<10+3和x>10-3.
类似于方程组,引出一元一次不等式组的概念和记法.(教科书137页)
类比方程组的解,引出一元一次不等式组的解集的概念.(教科书138页)
利用数轴,师生一起将问题1、问题2的解集求出来.
解法探讨出示教科书例1,解下列不等式组:
(1) (2)
小组讨论:根据不等式组的解集的意义,你觉得解决例1需要哪些步骤?在这些步骤中,哪个是我们原有的知识,哪个是我们今天获得的新方法?
在讨论的基础上,师生一起归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)找出各个不等式的解集的公共部分(利用数轴).
师生一起完成例1.
巩固练习:学生练习:教科书第140页练习1
教师巡视、指导,师生共同评讲
小结与作业
1.课堂小结这节课你学到了什么?有哪些感受?
2.教师归纳:学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要;学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验.
作业:课本第141页习题9.3第1、2、3题
9.3一元一次不等式组(二)
教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;
2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;
3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。
教学重点:建立不等式组解实际问题的数学模型。
教学难点:正确分析实际问题中的不等关系,列出不等式组。
教学过程(师生活动)
一、复习归纳
在习题9.3第1题中,我们知道以下不等式组与解集的对应关系
                                        
(1)        做出答案,请问你从中发现了什么?
(2)        如果a、b都是常数,且a<b,你能不画数轴(但头脑中可以想数轴)很快地写出它们的解集吗?
                                                   
老师推荐一个口诀帮助大家记忆:
小小取小;大大取大;大小小大取中间;大大小小取无聊。
探究实际问题出示教科书第139页例2(略)
问:(1)你是怎样理解“不能完成任务”的数量含义的?
(2)你是怎样理解“提前完成任务”的数量含义的?
(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?
师生一起讨论解决例2.
归纳小结1、教科书140页“归纳”
2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?
在讨论或议论的基础上老师揭示:
步法一致(设、列、解、答);本质有区别.(见下表)
一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表
设列解(结果)答
一元一次不等式组一个未知数找不等关系一个范围根据题意写出答案
二元一次不等式组两个未知数找等量关系一对数
教师揭示:列不等式解应用题时,(1)不等号方向要符合实际的数量关系,不能颠倒;(2)未知数所代表的量要确切,不能含含糊糊.
练习:教科书140页练习第2题。
某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.
教师巡视、指导、调控。
回复

使用道具 举报

27#
 楼主| 发表于 2013-2-23 00:44:10 | 只看该作者

布置作业:教科书141页习题9.3 第4、5、6题.
阅读与思考:利用不等关系分析比赛
教学目标1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;
2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;
3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;
4、感受数学的应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会.
教学重点:利用不等关系分析预测比赛结果。
教学难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性
教学过程(师生活动)
创设情境:引出话题多媒体展示有关雅典奥运会射击比赛的场景,进而引出问题1:某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?
牛刀小试
初享成功引出话题后,由于问题本身并不复杂,在同学解决此问题后,教师适当予以表扬后应及时将问题变维发散,在探究中将思维引向深人.
(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?
(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?
扩大视野
乘胜追击媒体展示多种场景,除了射击比赛,在竞技场上还有许许多多扣人心弦、精彩纷呈的比赛,同学们有兴趣对他们也进行一些分析吗?
问题2:有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,
小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由.
学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:
(1)如果小组中有一个队的战绩为全胜,A队能否出线?
(2)如果小组中有一个队的积分为10分,A队能否出线?
(3)如果小组中积分最高的队积9分,A队能否出线?
在讨论交流中形成问题、解决问题,在解决问题中自然涉及足球比赛的相关规则.
总结:1.归纳总结在上述利用不等关系分析比赛的问题解决中,我们是怎样进行思考的?
2.通过本节课的学习,你有哪些感受或体会。
布置作业149页复习题9第11题.
第二课时
复习引入在上节课中,我们曾利用不等关系对一些体育比赛的结果进行分析,初步感触了分析解决此类问题的思想方法。
研究的继续
提出问题:某次篮球联赛中,火炬队与月亮队要争出线权.火炬队目前的战绩是17胜13负(其中有一场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.为确保出线,火炬队在后面的比赛中至少要胜多少场?
在分析解决前述问题的过程中,自然会引发一些争论,提出一些问题假设,如:
(1)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜几场就一定能出线?
(2)如果月亮队在后面的比赛中3胜(包括胜火炬队1场)2负,那么火炬队在后面的比赛中至少要胜几场才能确保出线?
(3)如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中战绩如何几
(4)如果火炬队在后面的比赛中胜3场,那么什么情况下它一定出线?
以上问题由学生讨论交流最终得以解决,对于教学过程中生成的其他假设性问题可视情况处理,或当堂继续或提议学生课外合作完成.
初步应用:在2003^2004乒超联赛中,广东全球通与山东鲁能是最有实力赢得冠军的两支队伍,广东全球通目前的战绩是16胜1负积33分,山东鲁能目前的战绩是13胜4负积30分.
在已经进行的两队之间的上一次比赛中,山东鲁能曾以3:1胜广东全球通,目前两队后面都还有5场比赛(包括两队之间的另一场比赛).
根据背景资料,你能提出哪些问题与假设?你能运用学过的知识解决它吗?在解决问题的过程中,你需要哪些知识上的帮助?
反思小结:教师以问题促反思的形式让学生进行回顾总结,感受数学的应用价值以及如何用数学的方法以去分析解决问题。
第十章 数据的收集、整理与描述
10.1统计调查(一)
教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.
教学重点:全面调查的过程(数据的收集、整理、描述)
教学难点:绘制扇形统计图
教学过程
一、问题导入
在日常生活中,我们可能遇到下面一些问题:
(1)中央电视台《青年歌手大奖赛》的收视情况怎样?
(2)班级里同学出生主要集中在哪一年?
(3)本年度最受欢迎的影片是哪几部?
要解决这些问题,需要进行统计调查。
二、数据的收集
问题1:现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?
举手表决、问卷调查等。
问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。
你认为设计调查问卷应包括哪些内容?
问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。
就上面的问题我们可以设计如下的调查问卷:、

如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?
应加“男□女□(打勾)”这一项.
问卷设计好后,请每位同学填写,然后收集起来。例如,调查的结果是:
DCADBCADCD                                CDABDDBCDB
DBDCDBDCDB                                ABBDDDCDBD
回复

使用道具 举报

28#
 楼主| 发表于 2013-2-23 00:44:14 | 只看该作者

注意:用字母代替节目的类型,可方便统计.
三、数据的整理
从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?
不容易。因为这些数据杂乱无章,不容易发现其中的规律。
为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。你认为应该怎样整理我们收集到的数据?
划“正”字。这就是所谓的划记法。
下面我们利用下表整理数据。
全班同学最喜爱节目的人数统计表:
节目类型        划记        人数        百分比
A新闻       
4        10%
B体育        正正        10        25%
C动画        正
8        20%
D娱乐        正正正
18        45%
合计        40        40        100%








上表可以清楚地反映全班同学喜爱各类节目的情况。
四、数据的描述
为了更直观地看出上表中的信息,我们还可以用条形统计图和扇形统计图来描述数据。
绘制条形统计图[投影7]

绘制扇形统计图
我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分。扇形图通过扇形的大小来反映各个部分占总体的百分比。扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形。
因为组成扇形图的各扇形圆心角的和是3600,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数。
新闻:3600×10%≈360,
体育:3600×25%=900,
动画:3600×20%=720,
娱乐:3600×45%=1620.
在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比。[投影8]

你能根据上面的条形统计图和扇形统计图直接说出全班同学喜爱各类电视节目的情况吗?
在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述。通过分析表和图,了解到了全班同学喜爱电视节目的情况。在这个调查中,全班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查。例如,2000年我国进行的第五人口普查,就是一次全面调查。
请你举出一些生活中运用全面调查的例子.
五、课堂练习:课本153页第1题。
六、课堂小结
1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整理数据,利用条形统计图和扇形统计图来描述数据。
2、学会了设计调查问卷和扇形统计图的画法。
作业:课本P159第2、5题 ,P160 第7题。
10.1统计调查(二)
教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。
教学重点: 抽样调查、样本、总体等概念以及用样本估计总体的思想
教学难点:样本的抽取
教学过程
一、问题导入
要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。
二、抽样调查及有关概念
问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?
可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。
这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?
花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗?
可以抽取一部分学生进行调查.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-26 02:04

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表