师:同学的发言很好,把老师想要讲的都说了。现在大家对四个组得出的四种不同解法进行一个评价,看那个组的解法最好。
评:把评价纳入学生的学习过程之中,用评价来激发学生的学习兴趣,从而使评价成为促进学生主动学习的一部分。同时通过对几种不同解法优劣的比较和鉴别,可培养学生思维的批判性和养成解题后反思的良好习惯。
生8(五组):我认为,一组和三组的解法很好,因为,这是解二元一次方程组的常用方法。我们组也都是用的这两种解法。
生9(六组):我认为,四组的解法更好。虽然一组和三组的解法是常用的解法, 但计算较繁。四组的解法通过换元,使形式更简单了,便于计算,且不易出错。
生10(一组):虽然换元后形式要简单一些,但要解两次方程组,增加了解方程组的次数,并不一定就简单!
生6:我认为,我们组的解法最简单、最好。我们在解该题时,根据该题的特点,利用了换元的想法但没有换元,而是把和看成一个整体进行求解,整个解的过程基本上没有动笔就得出了答案,并且不易出错。
生5:我也认为二组的解法比我们组的好。
生11:我赞同生6的意见。我还想说一点。本题除了最好的解法以外,我认为,本题用图像法解是最不好的解法。因为,当你画好图像时,我已经解出答案了。用图像法解不但费时而且由于画的图像如果不准确得出的解还只是一个近似解而不是准确值。
评:教师原先的设计只是想通过比较评出最优秀的解法,而学生不但评出了最优解法,而且对每种解法的优劣还进行了相互比较评价,完全超出了教师的设想。实际上学生的评价才是全面、公正和最有价值的。往往在许多时候,学生的智慧要超过老师!
师:同学们分析得很好。通过比较、分析,大家是否都认为第二组的解法最好?生众: 第二组的解法最好!
师:我赞同大家的意见。其实,各组的解法有各自的特点,他们分别是从不同的角度思考进行的。第二组同学的解法是在认真审题、仔细观察题目特征的基础上,运用了两种数学思想方法从而快速、准确地得出了问题的解答。这两种数学思想方法是“换元的思想”和“整体的思想”。第二组同学的解答给我们一个很好的启示:在解题时,一定要认真审题,仔细观察题目的特征,灵活选用解题的方法,并恰当的运用数学思想方法来指导解题,可提高我们的解题效率。若长期这样进行下去,可形成良好的数学思维策略,迅速提高解题能力。
评: 数学思想方法是数学的精髓和灵魂,是数学知识在更高层次上的抽象和概括。利用数学思想方法来指导数学学习和解题,往往能提高学生的数学学习效率,达到事半功倍的效果。但数学思想方法不是游离于数学知识之外的,而是渗透在数学知识的发生、发展和运用的过程之中的。这就要求教师要有目的地及时总结提炼,将数学思想方法的学习有机地融入学生的数学学习过程之中。这里,教师把自己置于一个参与者的身份,参与学生的讨论,并将学生讨论中出现的数学思想方法及时地进行总结提炼,使学生认识到数学思想方法在数学学习中的重要价值和作用,从而将数学思想方法的学习有机地渗透其中,使整个讨论和学生的认识上升到一个新的高度。
师:刚才我们在给出了方程组的情况下获得方程组的解为。现在我们反过来思考一个问题:已知解为的方程组除例1外还有哪些?你们能否自己编一道用到例1的方程组来解的数学问题?看谁编的问题新颖、独特,形式多样。
评:教师是学生学习、探究活动的组织者和引导者。此处教师从培养学生探索创新能力和促进学生发展的角度出发又从反面提出问题,引导学生又积极的投入到探索、研究之中。
(学生进行积极的思考、探究,教师在学生之间巡回指导。时儿作为顾问回答学生提出的问题;时儿给予学生必要的指导;时儿参与学生的讨论、交流)。
生12; 何老师,我认为解为的方程组除例1外还有:
(1) ; (2) .
师:是否只有这两个方程组?
生12:不是,还有很多个?
生13:已知,则x =
,y =
.
师:她是利用非负数的性质以填空题的形式编制的习题,很好!(把题写在黑板上)还有其它形式的吗?
生14:有!我编了一道求值题:
已知:-3与7是同类项,求代数式2x2-3y+1的值。
师:好!这位同学是把同类项的概念与解方程组融为一体编制的,很有新意。(把题写在黑板上)
生15:我编制了一道选择题:下列方程组中,解为的方程组是( )
(A) ; (B) ; (C) ; (D) .
师:很好!与众不同。(把题写在黑板上)
生16:我还有一道题:
是否存在整数m、n 同时使关于x,y的方程组和的解都为。如果有,请求出的m、n值,如果没有请说明理由。
师:他出的是一道探索性问题,很有创意。(掌声)这种题型是近几年中考试题中经常遇到的一种题型,它对考察同学们的探究能力十分有利,因此,大家要注意这种题型的解法和作用。(把题写在黑板上)
以上大家都是着眼于解为而编制的习题,有没有利用例1 的方程组来解决编制的习题呢?可以上黑板板书和讲解。
生6:有!我编了一道文字题。(上黑板板书习题)
有一个两位数,它十位上的数字与个位上的数字和的一半加上十位上的数字与个位上的数字差的等于7; 它十位上的数字与个位上的数字和的一半减去十位上的数字与个位上的数字差的等于3;求这个两位数。
如果分别设十位上的数字为x,个位上的数字为y,得到的方程组就是例1的方程组。所以,这个两位数是82 。
生17:我编了一道应用题(上黑板板书习题):
一个笼子里有一些鸡和鸭。已知鸡的总数和鸭的总数的和的与鸡的总数和鸭的总数的差的相差3只;鸡的总数和鸭的总数的和的与鸡的总数和鸭的总数的差的一共刚好7只,问:这个笼子里的鸡和鸭各有多少只?
生18:我所编得题不是利用例1的方程组来解,但仍然是用二元一次方程组来解的。(上黑板板书习题):
有一个运输队承包了一家公司运送货物的业务。第一次运送18吨时派了一辆大卡车和5辆小卡车,第二次运送30吨时派了一辆大卡车和11辆小卡车,并且两次所派的车都刚好装满。问:两种车型的载重量各是多少?
师:这位同学没有局限于我们提出的问题,而是作了进一步的拓展。思路开阔,并且所编的问题,语言表述清楚,思维严谨,很不错!(掌声)
何老师,我还有!我还有!……
这时下课铃响了,教师及时地作了总结。许多学生为自己的成果没有得到展示而懊悔不已。
师:同学们今天思路开阔,思维活跃,充分发挥和展示了你们的聪明才智。你们编制的许多问题,老师课前都没有想到,很了不起!我今后还要向同学们学习。 |