|
地板
楼主 |
发表于 2013-1-7 16:08:46
|
只看该作者
二、是形式,还是实质?
[案例5]一年级数学课上,老师让同学们做课本上的一道题。题目是看图列式,左边图上画了一棵大树,树上有5只鸟,树的旁边又画了3只鸟(头朝树)。学生当即写出算式:“5+3=8”,表示“树上有5只鸟,又飞来3只鸟,一共有8只鸟。”右边图上也画了一棵大树,树上有5只鸟,树旁边有3只鸟,只不过这3只鸟的头的方向是远离树。学生也当即写出算式:“8-3=5”,表示“树上原来有8只鸟,飞了3只,还剩5只。”在一切进行的很顺利之时,一个小朋友站起来说,他列出的算式也是“5+3=8”。老师很不高兴:“难道你没看见小鸟飞的方向吗?头朝左边,就表示加,头朝右边就表示减……”
关键的是这种现象并非个别。在教学中,我们老师做过多少次这种人为的规定啊!“实线就表示合并,虚线就表示去掉”、“看见总共就加,看见剩下就减”。本来简单的数学,变得越来越复杂……
[案例6]教过《三角形认识》的老师都知道,在这节课上我们第一个要煞费苦心的,就是让学生懂得三角形是由三条线段围成而非组成的图形。为了“围成”与“组成”,我们往往要花去很长的时间,并常常为此设计而津津乐道。反思一下,如果我们不去区别“组成”与“围成”,或者说不把“围成”突出来讲,学生难道就会把“没有连接在一起的三条线段组成的图形”看成是三角形吗?我看百分之百不会。数学课上,我们往往喜欢教语文,喜欢去咬文嚼字,看似深挖实质问题,实际是渐离实质。对于一个概念的学习,我们不能只注重它的定义,我们更应该重视的是帮助学生形成丰富与清晰的心象:学生能画出多少个形状不同的三角形,学生能自主地在这些三角形中找出相同的特征并把它们归类吗?一提到钝角三角形、等腰三角形,学生的头脑中就能浮现出各种表象吗?
为什么学生作业中经常会出现“小明身高1.5厘米”等数学笑话?因为我们对定义的关注,也许超过了对心象与它所代表的实际意义的关注,而后者的重要性要远远大于前者。
三、是封闭,还是开放?
[案例7]48×53怎样计算?列竖式,先从个位乘起……我们有一套法则,我们很熟练它,但却根本不知道还会有别的算法。其实,下面的这几种方法都可以计算出它的结果:
48 48
×53 × 53
——— ———
2024 24
12 12
40 40
——— 20
2544 ———
2544
面对数学,我们千万不能认为自己的方法就是唯一的。教学数学,我们一定要积极地鼓励学生从多个角度去思考问题。让数学走出封闭,走向开放。
[案例8]在《分数的意义》教学中,我们通常都是从复习平均分开始,然后逐渐地引导学生把一个饼平均分成2份,表示每一份的分数;把一条线段平均分成3份,表示每一份的分数……步步为营,一层一层地引导下来。如果我们在课的一开始,就让同学们自己随便写一个分数,然后联系生活实际用这个分数说句话,或直接说说这个分数所表示的意义,可以吗?完全可以,在开放的、具有挑战性的又联系实际的问题情景中,学生的兴趣只会更高,思维更活跃。
我们不能老是让学生接触封闭的数学(条件唯一,答案唯一)。数学的魅力在哪里?在于数学的探索性与想象力。只有充满着想象的数学,才会深深地吸引着孩子。
某水果店有以下三种苹果(每千克2元、每千克4元和每千克5元),用40元钱可以买多少千克苹果?
某种苹果每千克2元,用40元钱可以买多少苹果呢?100元呢?
试比较以上两道题,谁的魅力更大呢?
|
|