绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

查看: 4997|回复: 0
打印 上一主题 下一主题

数学课堂巧设开放式提问教学论文

[复制链接]
跳转到指定楼层
楼主
发表于 2012-12-25 17:00:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
数学课堂巧设开放式提问教学论文
高丽红
一、巧设开放式提问,让学生的脑动起来

  古语云:“三个臭皮匠,顶个诸葛亮“,打开课堂思维之窗,放飞想象家的翅膀,以知识点为起跳板,让学生到太空翱翔。自主探究性学习是新课标所倡导的,也是广大师生所期望的。
  再如,以教学认识梯形为例,把梯形置于四边形的系统中来类比,引出梯形的概念。首先给出一组图形,其中有两边都不平行的四边形、一般平行四边形、矩形、正方形、梯形,提出如下问题:①这些图形的共同点是什么?②我们已经认识哪些图形?这些图形的共同点是什么?③最后一个图形与我们认识的图形对边不平行”的本质。
  笔者按学生的认知规律,由浅入深地设计了一系列问题,让学生自己去发现、探索,这样不仅突破了难点,更有利于弄清同类事物之间的区别和联系,会使学生对数学概念理解更加透彻,学生的课堂生成也显得自然流畅。
  二、巧设开放式提问,让学生的手动起来
  数学教学通过动手操作,把活动积累的经验转变成丰富的表象,促使学生自主探索发展思维,提高学生学习的兴趣。
  在概率的教学中,可引导学生亲自动手从事试验,收集实验数据,分析实验结果,获得事件发生的概率,消除错误感觉。
  比如:小明和小亮星期天去公园游玩,被公园门口的一种游戏所吸引,其游戏规则是:如图,是一个转盘,交一元钱玩十次,在转转盘之前,自己先决定按正数还是反数,然后转一下,转盘停下后,找到指针所指的数,从这个数开始,数到与该数相同个数的位置,凡数到17这个位置的交摊主3元钱,数到其他位置的得相应钱数,请你从概率的角度,并结合实际图形,说明小明和小亮玩这各游戏能赢吗?
  不能赢。因为若转出9和17,不论正数还是反数,必输,若转出其他数,输赢概率各为50%。但输时交3元钱,而赢时只得一元钱,其他钱数无论转出的数是多少都得不到。因此,转的次数越多,输的钱越多,有的学生很可能认为只要运气好,就能赢,要消除学生的错误感觉,“转盘”能有效的让大家体会概率的意义,在“猜测---试验并收集试验数据---分析试验结果-------开放设计方案”(不是每个问题都必须进行所有的这些程序)这些有趣的活动过程中进一步了解不确定现象和确定现象的特点。使学生真正地体验到学习地快乐。这样,我们的教育才可能真正地没有负担,学习就会成为孩子们最大的快乐。
  三、巧设开放式提问,让学生的心动起来
  古诗有时反映了数学知识形成的过程和知识点的本质,引入古诗来创设题的情境,不仅能够加深学生对知识的理解,还能加深学生对数学的兴趣,提高数学的审美能力。
  例如,在讲解勾股定理时,我们可以引入古诗《池葭(jia)出水》“湖静风平六月天,荷花半尺出水面,忽来南风吹倒莲,荷花恰在水中淹,入秋农夫始发现,落花距根二尺整,试问水深尺若干?这是数学中的一道趣题:有一个正方形的池子,池中心一株荷花,露出水面半尺,当南风吹来时,荷花倒在池边,它的末端刚好与水面一样平,当荷花落下距根二尺,试问水有多深?
  巧设问题情境,不仅可以使学生容易掌握数学知识和技能,而且可以使学生更好地体验教学内容中的情感,使原来枯燥的、抽象的数学知识变得生动形象、饶有兴趣。巧设问题情境,要根据不同的教学内容有所变化。问题的方法多种多样,需要教师不断的探索,才能提高数学的教学水平。
  四、巧设开放式提问,让学生体会到学习的乐趣
  如在“平行四边形”的复习课中,设计了这样的几个问题:
  问题1  在平行四边形中,能作一条直线将其分成面积相等的两部分吗?
  学生1:只要画出它的一条对角线所在的直线即可。
  学生2:也可以过平行四边形一组对边中点作直线。
  学生3:只要过对角线的交点任意画一条直线都可以。
  问题2  对于矩形、菱形、正方形,是否也有类似的画法?为什么?
  多数学生的答案是肯定的,原因是这些图形是一个共同点特点:都是中心对称图形。
  问题3  你能否用两条直线把一个平行四边形分割成四个部分,使含有一对顶角的两个部分面积相等?
  问题4  对于问题3,满足条件的直线有多少组?从中你发现有什么规律?
  通过这样的提问,学生探索问题的积极性高涨,回答问题争先恐后,并且通过合作交流共同提高,让学生用自己的思想方法解决问题,在不断地成功与失败中享受学数学的乐趣,也体验到探索发现的乐趣。
  再如每次学生解题完成后,我都会提出以下类似问题:
  (1) 你能用几种方法解决此题,最好的方法是什么?
  (2) 此题用到哪些知识,运用的方法有哪些?
  (3) 你还见过哪些题与些题类似?
  (4) 你不能够迅速解决这个问题的主要原因是什么?
  (5) 以后你再解决此类题时有什么经验要告诉大家?
  通过这类问题的逐步参透,不仅可提高学生的反思意识,促进反思习惯的养成,更能提高学生学习效率及学习的乐趣

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 顶 踩
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2025-1-8 05:06

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表