|
1.三角形的有关概念
知识考点:
理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。关键是正确理解有关概念,学会概念和定理的运用。应用方程知识求解几何题是这部分知识常用的方法。
精典例题:
【例1】已知一个三角形中两条边的长分别是 、 ,且 ,那么这个三角形的周长 的取值范围是( )
A、 B、
C、 D、
分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。
答案:B
变式与思考:在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( )
A、1<AB<29 B、4<AB<24 C、5<AB<19 D、9<AB<19
评注:在解三角形的有关中线问题时,如果不能直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。
【例2】如图,已知△ABC中,∠ABC=450,∠ACB=610,延长BC至E,使CE=AC,延长CB至D,使DB=AB,求∠DAE的度数。
分析:用三角形内角和定理和外角定理,等腰三角形性质,求出∠D+∠E的度数,即可求得∠DAE的度数。
略解:∵AB=DB,AC=CE
∴∠D= ∠ABC,∠E= ∠ACB
∴∠D+∠E= (∠ABC+∠ACB)=530
∴∠DAE=1800-(∠D+∠E)=1270
|
|