教学过程
|
教学环节
| 教师活动
| 预设学生行为
| 设计意图
|
一、情景引入,感受新知
| 多媒体课件出示: 1.两位妈妈和两个女儿一起买票乘班车去柳州,可是她们只买了3张票,便顺利地上了班车。这是为什么? (1)揭示原因:
师:为什么是三个人?真有同学猜对了! 师:问题出在谁身上?
| 以帖近学生生活的事例引入,鼓励学生大胆的猜想。
期待生成:一个人代表了两个身份。
| 设计悬念、理解感受、鼓励猜想、引发多元思维。
制造认知冲突激活学生思维,“既…又…”实现学科间整合。
|
二、活动体验,揭示新知
| 游戏体验
(1)抢椅子游戏
师:找两个同学,两把椅子进行游戏。 (2)猜拳游戏
师:闯关晋级
| 生成:学生马上表示无法游戏,提出应该如何安排人数与椅子数。 期待生成:学生们用猜拳的方法决定游戏选手。
| 制造冲突,再次体验新知,同时让所有学生真正参与 渗透一一对应的思想,体现游戏公平。
|
三、深度体验,理解新知
| 师生对抗 :(1)呼拉圈的解释〈学生活动,体会集合圈〉提问:为什么出现这种现象。 (2)贴名字的技巧
拿着两个名字怎么办?
| 出现冲突,有的同学从第一个圈里又跑到第二个圈里,但第一个圈又把她套进来。 他既参加了“猜”的游戏,又参加了“抢”的游戏。 学生可能回答“重叠起来”、“重合起来”
| 利用生活中熟悉的物品,引导学生创造性思考纠正经验偏差。感受集合思想,在形象与现实中完成数学化的过程,形成抽象的数学认识。 理解重复的本质意义。
|
四、运用新知,解决问题。
|
多媒体课件出示统计表:师:三(1)班选出8人参加学校的语文活动小组,又选出9人参加数学活动小组。参加两个小组的一共有多少人? 多媒体出示:花名册里的故事
| 在理解各部分意义的基础上,让学生尝试列式计算。 学生能够正确区分哪种情况是重复,哪种没有重复。 完成教材P110练习二十四第2题。
| 在没有重复的反向思维中加深对重复的理解,防止学生出现思维固化,巩固理解,合理运用。
|
五、回归情景,拓展新知
| 初会小调查: 1、你爸爸只抽烟的请起立。 2、你爸爸只喝酒的请起立。 3、你爸爸既抽烟又喝酒的请起立。
| 学生亲身体验,参与活动。
| 知识链接,文化拓展。渗透全集概念。
|
板书设计
|
重复
既…又… 3+4-1=6 贴名字 9+8-3=14 抢椅子 既…又… 猜拳
|