|
二、巩固训练
1. 把自然数1,2,3,4,5……如表依次排列成5列,那么数“1992”在_____列.
第一列 第二列 第三列 第四列 第五列
1 2 3 4 5
9 8 7 6
10 11 12 13 14
18 17 16 15
… … … … …
… … … …
2. 把分数 化成小数后,小数点第110位上的数字是_____.
3. 循环小数 与 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.
4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,
……共有1991个数.
(1)其中共有_____个1,_____个9_____个4;
(2)这些数字的总和是_____.
10. 7 7 7 …… 7所得积末位数是_____.
50个
答案:
6. 3
仔细观察题中数表.
1 2 3 4 5 (奇数排)
第一组
9 8 7 6 (偶数排)
10 11 12 13 14 (奇数排)
第二组
18 17 16 15 (偶数排)
19 20 21 22 23 (奇数排)
第三组
27 26 25 24 (偶数排)
可发现规律如下:
(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;
(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.
(3)10 9=1…1,10在1+1组,第1列
19 9=2…1,19在2+1组,第1列
因为1992 9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.
7. 7
=0.57142857……
它的循环周期是6,具体地六个数依次是
5,7,1,4,2,8
110 6=18…2
因为余2,第110个数字是上面列出的六个数中的第2个,就是7.
8. 35
因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.
9. 853,570,568,8255.
不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为19917=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3284+1=853(个),9的个数是2284+2=570(个),4的个数是2284=568(个).这些数字的总和为
1853+9570+4568=8255.
三、拓展提升
1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8 9=72,在9后面写2,9 2=18,在2后面写8,……得到一串数字:
1 9 8 9 2 8 6……
这串数字从1开始往右数,第1989个数字是什么?
2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?
3. 设n=2 2 2 …… 2,那么n的末两位数字是多少?
1991个
4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?
答案:11. 依照题述规则多写几个数字:
1989286884286884……
可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4) 6=330…5,所以所求数字是8.
12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990 10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.
13. n是1991个2的连乘积,可记为n=21991,首先从2的较低次幂入手寻找规律,列表如下:
n n的十位数字 n的个位数字 n n的十位数字 n的个位数字
21 0 2 212 9 6
22 0 4 213 9 2
23 0 8 214 8 4
24 1 6 215 6 8
25 3 2 216 3 6
26 6 4 217 7 2
27 2 8 218 4 4
28 5 6 219 8 8
29 1 2 220 7 6
210 2 4 221 5 2
211 4 8 222 0 4
观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990 20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n的末两位数字是48.
14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.
6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.
|
|