|
6#
楼主 |
发表于 2012-11-5 01:00:30
|
只看该作者
五年级奥数集训专题讲座(五)——最大公约数
回忆:什么叫公约数及最大公约数?
自然数a、b最大公约数可以记作(a,b)如果(a,b)=1,则a、b是( )。求几个数的最大公约数可以用( )和( )方法。
例1:一张长方形的纸,长7分米5厘米、宽6分米。现在要把它裁成一块块正方形,而且正方形边长为整厘米数,有几种裁法?如果说要使裁得的正方形面积最大,可以裁成多少块?
分析:7分米5厘米=75厘米,6分米=60厘米,因为裁成的正方形的边长必须能同时整除75厘米和60厘米,所以边长是75和60的公约数,它们的公约数有1、3、5、15,所以有4种裁法。
如果要使正方形面积最大,那么边长也要最大,最大为15。所以可以裁:
(75÷15)×(60÷15)=15(块)或 (75×60)÷(15×15)=20(块)
答:有4种裁法,可以裁20块.
【巩固练习】:将一块长80厘米,宽60厘米的长方形土地分成面积相等的小正方形。问:小正方形的面积最大是多少?
例2:一个数除200余4,除300余6,除500余10.求这个数最大是多少?
分析:一个数除200余4可以转化为196(200-4)能被这个数整除,另两个条件可以转化为294和490都能被这个数整除,求这个数最大是多少,也就是求196,294,490的最大公约数是多少。
(196,294,490)=98
答:这个数最大是98。
【巩固练习】:如果把110块糖平均分给五(1)班,则多5块,如果把210块平均分给这个班,则正好分完,如果把240块糖平均分给这个班,则少5块,五(1)放最多有多少名同学?
例3:把长132厘米,宽60厘米,高36厘米的木料,锯成尽可能大的同样大小的正方体木块,求正方体的棱长和锯成的块数。
分析:锯成的正方体的棱长是长方体长、宽、高的最大公约数。
(132,60,36)=12 所以正方体的棱长是12厘米。
正方体的块数为:(132÷12)×(60÷12)×(36÷12)=165(块) 请思考用其它方法
【巩固练习】:一个长方体木块的长是4分米5厘米,宽3分米6厘米,高2分米4厘米,要把它切成大小相等的正方体木块,不许有剩余,求所切的正方体的棱长最长是多少?可以切成多少块?
例4:一条道路由甲村经乙村到丙村。甲、乙两村相距450米,乙、丙两村相距630米。现在准备在路边栽树
要求相邻两棵树之间的距离相等,并且甲、乙两村的中点和乙两两村的中间都要栽上树,那么相邻两棵树之间的距离最多是多少米?
分析:由于甲、乙两村的中点和乙丙两村的中点都要种上树,也就是相当于要把450÷2=225米处和630÷2=315米处要种上树,也就是把225米和315平均分成若干段,而且距离最大,即求225和315的最大公约数。
(225,315)=45
答:相邻两棵树之间的距离是45米。
我也能行
1、有三根钢管,它们的长度分别是240厘米,200厘米,480厘米,如果把它们截成同样长的小段,且不许有剩余,每小段最长可以是多少厘米?
2、一个数除150余6,除250余10,除350余14,这个数最大是多少?
3、有一个自然数a,它符合下面的条件,a能整除112,a除38余2,102减去2也能被a整除,求a最大是多少?
4、有336个苹果,252个桔子,210个梨,用这些水果最多可以分成多少份同样的礼物?每份礼物中3种水果各有多少个?
5、在长60米,宽54米的长方形的花圃的各边上以最大且相等的距离种桃树,每两棵桃树之间5棵月季花,共种月季花多少棵?
6、36支铅笔,40个本子,平均奖给几位优秀学生,结果多出1支铅笔,差2个作业本,问有几位优秀学生?
7、一条公路由A地经B地到C地,已知AB两地之间相距600米,BC两地之间相距780米,现在路边种树,要求相邻两棵树之间的距离相等,并且在B地以及AB、BC的中点上都要种一棵,那么相邻两棵树之间的距离最多是多少米?
思考:甲、乙两个数的乘积是3072,它们的最大公约数是16,求甲、乙两数。
提示:甲、乙两数是16的倍数,设甲数÷16=a,乙数÷16=b。可知,a与b是互质的……甲×乙=16a×16b
|
|