绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: admin
打印 上一主题 下一主题

小学生四年级奥数教材名师辅导十七讲.DOC版下载

[复制链接]
15#
 楼主| 发表于 2012-11-4 01:20:58 | 只看该作者


(八) 有趣的数阵图练习
1.        把1~7填入下图中,使每条线段上三个○内的数的和相等.
                        







2.        把1~16填入下图中,使每条边上4个数的和相等,两个八边形上8个数的和也相等.










3.        把4~9填入下图中,使每条线上三个数的和相等,都是18.





4.         把1~8这8个数填入下图,使每边上的加、减、乘、除成立.





5.        把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.





6.        把1~11填入图中,使每条线上三个数的和相等.








7.        把1~8,填入图中,使每条线及正方形四个顶点上的数的和相等.




8.        把1~9,填入下图中,使每条线段三个数和及四个顶点的和也相等.






9.        把17,23,25,31,46,53,58,66,72,88,94,100十二个数填入下图,使任意三个相邻的数相加的和除以7的余数相等.
回复

使用道具 举报

16#
 楼主| 发表于 2012-11-4 01:21:04 | 只看该作者


(九) 枚举法
一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。这种分析问题、解决问题的方法,称之为枚举法。枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

一、例题与方法指导

例1. 一本书共100页,在排页码时要用多少个数字是6的铅字?
思路导航:
解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。        总共10+10=20(个)
答:在排页码时要用20个数字是6的铅字。
例2. 从A市到B市有3条路,从B市到C市有两条路。从A市经过B市到C市有几种走法?(适于三年级程度)
思路导航:
解:作图3-1,然后把每一种走法一一列举出来。

第一种走法:A ① B ④ C
第二种走法:A ① B ⑤ C
第三种走法:A ② B ④ C
第四种走法:A ② B ⑤ C
第五种走法:A ③ B ④ C
第六种走法:A ③ B ⑤ C
答:从A市经过B市到C市共有6种走法。

例3. 印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?
思路导航:
(1)数码一共有10个:0、1、2……8、9。0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
(2)页码是两位数的从第10页到第99页。因为99-9=90,所以,页码是两位数的页有90页,用数码:
2×90=180(个)
(3)还剩下的数码:
1890-9-180=1701(个)
(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。所以页码最高是3位数,不必考虑是4位数了。往下要看1701个数码可以排多少页。
1701÷3=567(页)
(5)这本书的页数:
9+90+567=666(页)


二、巩固训练
1. 如图9-10,有8张卡片,上面分别写着自然数1至8。从中取出3张,要使这3张卡片上的数字之和为9。问有多少种不同的取法?
解答:三数之和是9,不考虑顺序。1+2+6=9,1+3+5=9,2+3+4=9
  答:有3种不同的取法。
        2.从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?
解答:两数之和大于10,不考虑顺序。8+7,8+6,8+5,8+4,8+3 7+6,7+5,7+4 6+5
答:共有9种不同的取法。
        3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?
解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23
  答:一共有5种不同的支付方法。
4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?
需要考虑吃的顺序不同。7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3
  答:有8种不同的吃法。
  5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。问一共有多少种不同的订法?
  解答:3个工厂各不相同,3数之和是300份,要考虑顺序。99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99
答:一共有7种不同的订法.
回复

使用道具 举报

17#
 楼主| 发表于 2012-11-4 01:21:11 | 只看该作者

三、能力提升

1. 甲、乙、丙、丁4名同学排成一行。从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有多少种?
 解答:不同的排法共有9种。

        2. abcd代表一个四位数,其中a,b,c,d均为1,2,3,4中的某个数字,但彼此不同,例如2134。请写出所有满足关系a<b,b>c,c<d的四位数abcd来。
解答:若a最小:1324,1423;若c最小:2314,2413,3412
  答:有5个:1324,1423,2314,2413,3412。
        3. 一个两位数乘以5,所得的积的结果是一个三位数,且这个三位数的个位与百位数字的和恰好等于十位上的数字。问一共有多少个这样的数?
  解答:设两位数是AB,三位数是CDE,则AB*5=CDE。CDE能被5整除,个位为0或5。若E=0,由于E+C=D,所以C=D;又因为CDE/5的商为两位数,所以百位小于5。当C=1,2,3,4时,D=1,2,3,4,CDE=110,220,330,440。若E=5,当C=1,2,3,4时,D=6,7,8,9,CDE=165,275,385,495
 答:一共有8个这样的数。
        4. 3件运动衣上的号码分别是1,2,3,甲、乙、丙3人各穿一件。现在25个小球,首先发给甲1个球,乙2个球,丙3个球。规定3人从余下的球中各取球一次,其中穿1号衣的人取他手中球数的1倍,穿2号衣的人取他手中球数的3倍,穿3号衣的人取他手中球数的4倍,取走之后还剩下两个球。那么,甲穿的运动衣的号码是多少?
  解答:3人自己取走的球数是25-(1+2+3)19-2=17(个),17=3*4+2*1+1*3,所以,穿2号球衣的人取走手中球数1的3倍,这是甲。
 答:甲穿的运动衣的号码是2。  
        5. 甲、乙两人打乒乓球,谁先胜两局谁赢;如果没有人连胜两局,则谁先胜三局谁赢,打到决出输赢为止。那么一共有多少种可能的情况?
  解答:设甲胜为A,甲负为B,若最终甲赢,有7种可能的情况。如图。同理,乙赢也有7种可能的情况。7+7=14
答:一共有14种可能的情况。




(十) 逻辑推理

曾经爱因斯坦出过一道测试题, 他说世界上有98%的人回答不出!!让我们一起来看看是什么题呢。
在一条街上有5座颜色不同的房子,住着5个不同国家的人,他们抽着5种不同的烟,喝着5种不同的饮料,养着5种不同的宠物。有下面15个已知条件,求解。
1、英国人住红色房子。
2、瑞典人养狗。
3、丹麦人喝茶。
4、绿色房子在白色房子左面。
5、绿色房子主人喝咖啡。
6、抽Pall Mall香烟的人养鸟。
7、黄色房子主人抽Dunhill香烟。
8、住在中间房子的人喝牛奶。
9、挪威人住第一间房。
10、抽Blends香烟的人住在养猫的人隔壁。
11、养马的人住抽Dunhill香烟的人隔壁。
12、抽Blue Master的人喝啤酒。
13、德国人抽Prince香烟。
14、挪威人住蓝色房子隔壁。
15、抽Blends香烟的人有一个喝水的邻居。
问:哪个国家的人养鱼?
这道题为什么会难倒这么多人呢,首先,我们就来研究一下关于他的最基本的逻辑问题吧。
回复

使用道具 举报

18#
 楼主| 发表于 2012-11-4 01:21:16 | 只看该作者

一、例题与方法指导

        例1.        某地质学院的学生对一种矿石进行观察和鉴别:
  甲判断:不是铁,也不是铜。
  乙判断:不是铁,而是锡。
  丙判断:不是锡,而是铁。
经化验证明:有一个人的判断完全正确,有一个人说对了一半,而另一个人完全说错了。你知道三人中谁是对的,谁是错的,谁是只对一半的吗?
思路导航:
丙全说对了,甲说对了一半,乙全说错了。先设甲全对,推出矛盾后,再设乙全对,又推出矛盾,则说明丙全对,甲说对了一半,乙全说错了。

        例2.        数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌。”结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁得铜牌?
思路导航:
小华得金牌,小强得银牌,小明得铜牌。
(1)若小明得金牌,小华一定“不得金牌”,这与“老师只猜对了一个”相矛盾,不合题意。
(2)若小华得金牌,那么“小明得金牌”与“小华不得金牌”这两句都是错的,那么“小强不得铜牌”应是正确的,那么小强得银牌,小明得铜牌。

        例3.        一位法官在审理一起盗窃案中,对涉及到的四名嫌疑犯甲、乙、丙、丁进行了审问。四人分别供述如下:
  甲说:“罪犯在乙、丙、丁三人之中。”
  乙说:“我没有做案,是丙偷的。”
  丙说:“在甲和丁中间有一人是罪犯。”
  丁说:“乙说的是事实。”
  经过充分的调查,证实这四人中有两人说了真话,另外两人说的是假话。
  同学们,请你做一名公正的法官,对此案进行裁决,确认谁是罪犯?
思路导航:
乙和丁是盗窃犯。如果甲说的是假话,那么剩下三人中有一人说的也是假话,另外两人说的是真话。可是乙和丁两人的观点一致,所以在剩下的三人中只能是丙说了假话,乙和丁说的都是真话。即“丙是盗窃犯”。这样一来,甲说的也是对的,不是假话。这样,前后就产生了矛盾。所以甲说的不可能是假话,只能是真话。同理,剩下的三人中只能是丙说真话。乙和丁说的是假话,即丙不是罪犯,乙是罪犯。又由甲所述为真话,即甲不是罪犯。再由丙所述为真话,即丁是罪犯。


二、巩固训练

1.        小王、小张、小李三人在一起,其中一位是工人,一位是战士,一位是大学生。现在知道:小李比战士年龄大,小王和大学生不同岁,大学生比小张年龄小。那么三人各是什么职业?
解:小李是大学生,小王是战士,小张是工人.

        2.        甲、乙、丙分别是来自中国、日本和英国的小朋友。甲不会英文,乙不懂日语却与英国小朋友热烈交谈。问:甲、乙、丙分别是哪国的小朋友?
解:甲是日本人,乙是中国人,丙是英国人。

        3.        徐、王、陈、赵四位师傅分别是工厂的木工、车工、电工和钳工,他们都是象棋迷。
  (1)车工只和电工下棋;
  (2)王、陈两位师傅经常与木工下棋;
  (3)徐师傅与电工下棋互有胜负;
  (4)陈师傅比钳工下得好。
  问:徐、王、陈、赵四位师傅各从事什么工种?


徐是车工,王是钳工,陈是电工,赵是木工。
  
解:提示:由(2)(3)(1)可画出右表:
回复

使用道具 举报

19#
 楼主| 发表于 2012-11-4 01:21:21 | 只看该作者

(十一) 抽屉原理
  如果将5个苹果放到3个抽屉中去,那么不管怎么放,至少有一个抽屉中放的苹果不少于2个。道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相矛盾,因此至少有一个抽屉中放的苹果不少于2个。
  同样,有5只鸽子飞进4个鸽笼里,那么一定有一个鸽笼至少飞进了2只鸽子。
  以上两个简单的例子所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
  说明这个原理是不难的。假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相矛盾,所以前面假定“这n个抽屉中,每一个抽屉内的物品都不到2件”不能成立,从而抽屉原理1成立。
从最不利原则也可以说明抽屉原理1。为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放入1件物品,共放入n件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有1个抽屉不少于2件物品。这就说明了抽屉原理1。

一、例题与方法指导
例1.        某幼儿园有367名1996年出生的小朋友,是否有生日相同的小朋友?
分析与解:1996年是闰年,这年应有366天。把366天看作366个抽屉,将367名小朋友看作367个物品。这样,把367个物品放进366个抽屉里,至少有一个抽屉里不止放一个物品。因此至少有2名小朋友的生日相同。

例2.        在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?
分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。我们将余数的这三种情形看成是三个“抽屉”。一个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”里。
将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数,也就是说至少有两个数除以3的余数相同。这两个数的差必能被3整除。

例3.        在任意的五个自然数中,是否其中必有三个数的和是3的倍数?
分析与解:根据例2的讨论,任何整数除以3的余数只能是0,1,2。现在,对于任意的五个自然数,根据抽屉原理,至少有一个抽屉里有两个或两个以上的数,于是可分下面两种情形来加以讨论。
  第一种情形。有三个数在同一个抽屉里,即这三个数除以3后具有相同的余数。因为这三个数的余数之和是其中一个余数的3倍,故能被3整除,所以这三个数之和能被3整除。
  第二种情形。至多有两个数在同一个抽屉里,那么每个抽屉里都有数,在每个抽屉里各取一个数,这三个数被3除的余数分别为0,1,2。因此这三个数之和能被3整除。
综上所述,在任意的五个自然数中,其中必有三个数的和是3的倍数。

二、巩固训练
1.        有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?
分析与解:由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计。
  对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:
  (奇,奇),(奇,偶),(偶,奇),(偶,偶),
  其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性。
将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形。由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数。


2.        用红、蓝两种颜色将一个2×5方格图中的小方格随意涂色(见右图),每个小方格涂一种颜色。是否存在两列,它们的小方格中涂的颜色完全相同?

分析与解:用红、蓝两种颜色给每列中两个小方格随意涂色,只有下面四种情形:

  将上面的四种情形看成四个“抽屉”。根据抽屉原理,将五列放入四个抽屉,至少有一个抽屉中有不少于两列,这两列的小方格中涂的颜色完全相同。
在上面的几个例子中,例1用一年的366天作为366个抽屉;例2与例3用整数被3除的余数的三种情形0,1,2作为3个抽屉;例4将一条线段的10等份作为10个抽屉;例5把每堆水果中,苹果数与桔子数的奇偶搭配情形作为4个抽屉;例6将每列中两个小方格涂色的4种情形作为4个抽屉。由此可见,利用抽屉原理解题的关键,在于恰当地构造抽屉。

3.        在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间的距离不大于1厘米?
分析与解:把长度10厘米的线段10等分,那么每段线段的长度是1厘米(见下图)。

  将每段线段看成是一个“抽屉”,一共有10个抽屉。现在将这11个点放到这10个抽屉中去。根据抽屉原理,至少有一个抽屉里有两个或两个以上的点(包括这些线段的端点)。由于这两个点在同一个抽屉里,它们之间的距离当然不会大于1厘米。
所以,在长度是10厘米的线段上任意取11个点,至少存在两个点,它们之间的距离不大于1厘米。
回复

使用道具 举报

20#
 楼主| 发表于 2012-11-4 01:21:26 | 只看该作者

三、拓展提升

        1.        有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

2.        一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
3.       
分析与解答 扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计10种情况.把这10种花色配组看作10个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有11个人。

        4.        从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答 我们用题目中的15个偶数制造8个抽屉:

  凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。
  现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。



(十二) 倒推法的妙用



师说:“这里有10张纸牌,依次写着1-10,我闭上眼睛,你任意抽一张出来。”“好,已抽好了。”乙回答道。“嗯,把你的那张纸牌上的数乘上6再加9,然后除以3再加上2。算好后告诉我得数是几。(可任意找学生抽卡片)
乙又说:“得数是23。”
那她抽的那一张是几呢?
这个数是9,我们怎么知道?同学们,你们都知道其中的奥秘吗?
让这节课来告诉大家吧,
利用倒推法,倒推法是根据加法与减法、乘法与除法互相逆运算的关系,从最后的得数出发。因为23是加上2后得到的,就要减去2,得21;21除以3后得到的,就要乘上3,得63;63是加上9后得到的,就就要减去9得54;54是乘上6后得到的,就要除以6,得9。所以乙抽到的那一张一定是9。一些游戏,只要你知道其中的奥秘后,你就不会大惊小怪了。

一、例题与方法指导

例1. 喜迎奥运,猜年龄:刘翔的年龄除以4再减去2,乘25正好是100.你知道刘翔今几岁吗 ?
思路导航:
① 100÷25+2×4 ② 100÷(25+2×4) ③ (100÷25+2)×4到底是哪个呢?
倒推法的方法:从结果出发,从后向前运算,并且每个运算变成它的逆运算。正确答案③

例2. 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?
思路导航:
依题意,画图进行分析.
  
解:列综合算式:
  {[(1+1)×2+1]×2+1}×2
  =22(个)
答:篮子里原有梨22个.

例3. 菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?
思路导航:
解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.
    
解:①剩余的白菜是多少千克?1800÷3=600(千克)
  ②第二天运进200千克后的一半是多少千克?
  600+30=630(千克)
  ③第二天运进200千克后有白菜多少千克?
  630×2=1260(千克)
  ④原来的一半是多少千克?1260—200=1060(千克)
  ⑤原有贮存多少千克?1060×2=2120(千克)
  答:菜站原来贮存大白菜2120千克.
  综合算式:
  [(1800÷3+30)×2—200]×2
  =2120(千克)
  答:菜站原有冬贮大白菜2120千克.

通过以上例题说明,用倒推法解题时要注意:
  ①从结果出发,逐步向前一步一步推理.
  ②在向前推理的过程中,每一步运算都是原来运算的逆运算.
③列式时注意运算顺序,正确使用括号
回复

使用道具 举报

21#
 楼主| 发表于 2012-11-4 01:21:32 | 只看该作者


二、巩固训练

1. 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?



2. 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?



3. 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?



三、拓展提升
1.        一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?
  分析 这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.
  如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
  把一个数用□来表示,根据题目已知条件可得到这样的等式:
  {[(□-8)+10]÷7}×4=56.
  如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.
  解:{[(□-8)+10]÷7}×4=56
   [(□-8)+10〕÷7=56÷4
  答:于昆这次数学考试成绩是96分.
  通过以上例题说明,用倒推法解题时要注意:
  ①从结果出发,逐步向前一步一步推理.
  ②在向前推理的过程中,每一步运算都是原来运算的逆运算.
  ③列式时注意运算顺序,正确使用括号.
2.        马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?
  分析 马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.
  解:111-(70—10)+(7—1)=57
  答:正确的答案是57.
3.        树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?
  分析 倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.
  解:①现在三棵树上各有鸟多少只?48÷3=16(只)
  ②第一棵树上原有鸟只数. 16+8=24(只)
  ③第二棵树上原有鸟只数.16+6—8=14(只)
  ④第三棵树上原有鸟只数.16—6=10(只)
  答:第一、二、三棵树上原来各落鸟24只、14只和10只.
4.        篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?
  分析 依题意,画图进行分析.
  
  解:列综合算式:
  {[(1+1)×2+1]×2+1}×2
  =22(个)
  答:篮子里原有梨22个.
5.        甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?
  分析 解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.
  求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.
  解:①甲乙两桶油共剩多少千克?
  15×2-14=16(千克)
  ②乙桶油剩多少千克?16÷(3+1)=4(千克)
  ③甲桶油剩多少千克?4×3=12(千克)
  用倒推法画图如下:
  
  ④从甲桶卖出油多少千克? 15-11=4(千克)
  ⑤从乙桶卖出油多少千克? 15—5=10(千克)
答:从甲桶卖出油4千克,从乙桶卖出油10千克.

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-11-2 15:22

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表