此套湘教版初中九年级数学上学期期中考试综合卷带参考答案免费下载由绿色圃中小学教育网整理,所有试卷与九年级数学湘教版教材大纲同步,试卷供大家免费使用下载打印,转载前请注明出处。
因为试卷复制时一些内容如图片、公式等没有显示,需要下载的老师、家长们可以到本帖子二楼(往下拉)下载WORD编辑的DOC附件使用!
如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!
试卷内容预览:
湘教版数学九年级上册期中试卷(1)
一、填空(每小题3分,共24分)
1.已知关于x的一元一次方程x 2+3x+1-m=0 ,请你自选一个m的值,使方程没有实数根. m=________.
2.命题“同旁内角互补”的条件是____________________,结论是_________________.
3.已知方程 .当_______时,为一元二次方程.
4.设 ,则 =_______, =________.
5.如图,一斜坡AB长80m,高BC为5m,将重物从坡底A推到
坡上20m的M出处停下,则停止地点M的高
度为__________.
6.命题“直角三角形的两锐角互余”的逆命题是_____________________________________
_________________________________________.
7.如图,P是正方形ABCD内的一点,将△PCD绕点C
逆时针方向旋转后与△P CB重合,若PC=1,
则PP′ =__________.
8.已知一个三角形的两边长为 3和 4 , 若第三边长
是方程 的一个根,则这个三角
形周长为____________,面积为____________.
二、选择题(每小题3分,共30分)
1.已知一元二次方程 用配方法解该方程,则配方后的方程是( )
A. B.
C. D.
2.下列命题是假命题的是( )
A.所有的矩形都相似 B.所有的圆都相似
C.一个角是100°的两个等腰三角形相似 D.所有的正方形都相似
3.已知线段a、b有 ,则a:b为( )
A. 5 : 1 B. 5 : 2 C. 1 : 5 D. 3 : 5
4.如果三角形的一个外角的平分线平行于三角形的一边,那么这个三角形一定是( ) .
A.锐角三角形 B.钝角三角形 C. 等腰三角形 D.直角三角形
5.下列说法正确的是( )
A.“对顶角相等”是定义 B.“在直线AB上取一点C”是命题
C.“整体大于部分”是公理 D.“同位角相等”是定理
6.已知等腰梯形的上底与腰相等,且对角线与腰垂直,则梯形的两底之比是( )
A. 1:2 B. 1 : C. 2:3 D. 1 :
7.已知代数式 与 的值相等,则=( )
A. 1 B.-1或-5 C. 2或3 D. -2或-3
8.如图,在平行四边形ABCD中, F是AD
延长线上一点,连接BF交DC与点E,则
图中相似三角形共有( )
A. 0对 B. 1对 C. 2对 D.3对
9.关于x的方程mx 2+x-2m=0( m为常数)的实
数根的个数有( )
A. 0个 B. 1个 C. 2个 D. 1个或2个
10.如图5,△ABC中,边BC=12cm,高AD=6cm ,边长
为x的正方形PQMN的一边在BC上,其余两个顶点分
别在AB、AC上,则正方形边长x为( )
A. 3cm B. 4cm C. 5cm D. 6cm
三、解答题(每小题8分,共24分)
1.解下列方程
(1) (2)
2.如图,△ABC中,∠BAC=90°, AD⊥BC于D, FB平分
∠ABC交AD于E ,交AC于F .
求证:AE =AF
3.已知,如图,点E是正方形ABCD的边AB上的任意一点,过点D作 交BC的延长线于点F,求证E=DF
四、应用题(10分)
在长方形钢片上剪去一个小长方形,制成一个四周宽相等的长方形框(如图).已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2 ,求这个长方形框的框边宽.
五、提高题(12分)
如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上的一点,且∠BFE =∠C
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)、(2)的条件下,若AD=3,
求BF的长(计算结果可含根号)
附加题(每题10分,共20分)
1、某厂计划生产一种产品,每日最高产量为40件,且每日产品全部售出。已知生产X件成本(单位:元)R=500+30X,每件售价(单位:元)P=170—2X
①每日产量为多少时,每日获利为1750元
②每日产量为多少时,可获利获得最大利润?这个最大利润为多少元?
2、如图△ABC中,点E、F在BC上,点D,G分别在AB,四边形DEFG是矩形,若矩形DEFG的面积与△ADG的面积相等,设△ABC的BC边上的高AH与DG相交于K点.
求 的值
|