|
教材分析
学生在前几年的学习中对乘法交换律已经有了初步的认识,知道了两个因数交换位置积不变的知识,这节课是正式概括出任意两个例子让学生观察,从中发现对任意两个整数相乘有同样的性质,进而总结出“乘法交换律”这个术语。
1和0在乘法中都具有特殊性,要通过让学生进行口算观察,让学生明白、发现特殊的地方
本节课主要是让学生在观察、比较、讨论、概括、应用中学习知识。
学情分析
乘法交换律的教学要敢于放手让学生自主探索,通过计算从几组算式间的联系发现并总结规律,逐步概括出乘法的交换律,最后抽象出用字母表示的定律。它是由学生经过自己探索得到的,在学生心中就有实感,有了实感就有认识,有了认识就有理解学生理解了才能运用,理解得透彻就能熟练运用。
教学目标
1,使学生理解和掌握乘法交换律,并能运用它进行验算。
2, 借助观察、比较、概括等方法培养学生的分析推理能力。
3, 培养学生运用新知识解决实际问题的能力。
教学重点和难点
教学重点:使学生理解并运用乘法交换律。
教学难点:乘法交换律的熟练使用。
教学过程
一, 猜谜引入
1, 猜谜:“兄弟四五个,各有各的家,有谁走错门,让人笑掉牙。”
让学生回答谜底(纽扣)
师:你为什么会想到纽扣?
生:(因为扣错纽扣了,衣服穿出去会让人笑话)
师:纽扣交换了位置会闹笑话,我们刚学了什么运算定律也和交换位置有关系?谁愿意把加法交换律说给同学们听?
(要求举例说明,并用字母表示)
,2,师:今天我们一起来学习乘法有哪些运算定律,谁愿意猜猜?
学生:可能有乘法交换律和乘法结合律。
师:你们怎么会想到有乘法交换律和乘法结合律的?
学生:(根据加法中的运算定律来猜的)
师:你们能根据加法中的运算定律,大胆来猜想乘法中有什么运算定律,
这份勇气是值得肯定的也是值得表扬的,那么你们认为什么是乘法交换律,什么是乘法结合律呢?
(让学生说一说,能说多少就多少)
二, 验证猜想
验证乘法交换律
1, 师:同学们说得好像有道理但是你们的猜想到底对不对?乘法是不是具有你们猜想的运算定律呢?怎样确认你们自己的猜想呢?
你们想不想自己来亲自验证一下呢?
好,下面我们就来研究“乘法交换律”,我们分组合作完成这个光荣而又有意义的任务。
(要求:独立思考,想出自己的验证方法,把它写下来)
每人都把自己的想法告诉自己的合作伙伴。
比一比,看谁的验证方法最好,让他作为组代表向全班汇报。
2, 学生分组研究,教师巡视指导。
3, 汇报
学生可能出现的情况:
(1) 我们小组经过讨论认为乘法有交换律,比如:3×5=5×3, 6×2=2×6等等,两个因数的位置变了,但它们的积不变.
(2) 我们也找了两个数,将它们相乘发现两个因数的位置变了,但它们的结果是相等的..
(3) 我们小组也认为乘法有交换律,比如,我们班有四个小组每组有9人,求全班有多少人?可以列成算式: 4×9=36 , 也可以用9×4=36来计算.这就是说4×9=9×4, 因此乘法和加法一样有交换律.
(4) 根据乘法口诀,一句乘法口诀可以算两道乘法算式,如四七二十八能算4×7=28, 7×4=28.
(5) 我们想到的是乘法验算时,交换因数的位置再乘一遍积是一样的,所以乘法有交换律.
(6) 解决问题时,一个问题可以列两个算式,.
(7) 看图列式时,一个图也可以列两个算式..
……
(教师根据学生发言板出算式)
师:(总结方法)有没有不同意见?(如有不同意见的,请认为乘法没有交换律的同学发言)
师:看来乘法确实有交换律,我们的数学家也通过大量的研究证明乘法是有交换律的.,你们一样很了不起.
师:经过刚才的研究和验证,你们现在能用自己的语言描述一下“乘法交换律”吗?
(两个数相乘,交换两个因数的位置,积不变)
你们能用字母来表示这个运算定律吗?板书: a×b=b×a
三,课堂练习
第35页做一做
四,课堂总结
今天的学习你有什么收获?需要注意什么问题?
4,
|
|