|
教学内容
《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。
设计思路
这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。
教学目标
1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。
4、培养学生抽象、概括的能力。
重点难点
1、理解公因数和最大公因数的意义。
2、掌握求两个数的最大公因数的方法。
教具准备
多媒体课件、卡片
教学过程
一、导入
1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?
2、分别写出16和12的所有因数。
二、教学实施
1、老师用多媒体课件演示集合图。
指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。
其中,4是最大的公因数,叫做他们的最大公因数。
2、完成教材第80页的“做一做”
先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。
3、出示例2。怎样求18和27的最大公因数?
(1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。
(2) 小组讨论,互相启发,再在全班交流。
(3) 老师用多媒体课件和板书演示方法
方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。
方法二 :先找出18的因数,再看18的因数中有哪些是27的因数,从中找最大。
18的因数有:① ,2 ,③ ,6 ,⑨ ,18
方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。
27的因数有:①,③,⑨,27
方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。
4、完成教材第81页的“做一做”。
学生先独立完成,独立观察,每组数有什么特点,再进行交流。
小结:求两个数最大公因数有哪些特殊情况?
⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。
⑵ 当两个数只有公因数1时,他们的最大公因数是1.。
三、课堂练习设计(多媒体课件出示)
选出正确答案的编号填在括号里
1、9和16的最大公因数是 ( )
A . 1 B. 3 C . 4 D. 9
2、16和48的最大公因数是 ( )
A . 4 B. 6 C . 8 D. 16
3、甲数是乙数的倍数,甲乙两数的最大公因数是 ( )
A .1 B. 甲数 C . 乙数 D. 甲、乙两数的积
四、课堂小结
通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。
五、留下疑问
有三根小棒,分别长10㎝,16㎝, 48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?
六、课堂作业设计
教材82页第2题、第5题
板书设计
最大公因数
例2:怎样求18和27的最大公因数?
18的因数有:1 ,2 ,3 ,6 ,9 ,18
27的因数有:1 ,3 , 9 ,27
18和27的公因数有:1 ,3 , 9
18和27的最大公因数是9
|
|