|
学习了长度的测量后,在我们的生活中体积的测量也是非常重要的,任何物体都要占据一定的立体空间,也就是具有一定的体积,对于具有规则形状的物体,如长方体、正方体、球体等,只要测量出它们的长、宽、高或直径,就可以算出它们的体积。但是对于液体的体积,就要用专门的仪器测量,如量筒、量杯。并且对于形状不规则的固体,就要用特殊的方法间接测量它们的体积。
要求学生观察桌上的量筒,结合书第28页图2-9,认清量筒和量杯的结构特点。
1、体积的单位:国际单位是米3,实际应用中还有分米3、厘米3、毫米3、升、毫升,它们的符号分别是m3、dm3、cm3、mm3、L、mL,1L=1dm3。并简单介绍体积单位的换算。
2、认识量筒的量程、分度值。
3、量筒读数时要注意视线要同凹形水面的底相平,或与凸形水银面的顶相平。
实验:让学生在量筒中到入一定体积的水,并正确读出水的体积。明白了量筒的使用,再简单介绍量杯,强调量杯的示数特点与量筒不同,由于量杯的形状特点,所以量杯上的刻度是不均匀的。
在介绍完量筒的使用后,提出问题:如何测出你们桌面上的不规则形状的石块的体积呢?(要求学生看书第28页的做一做,并思考测量石块体积的方法)
教师讲解:我们只要借助排开水的体积间接测量出这个石块的体积,先在量筒中到入一定体积的水,然后用细线绑住小石块,慢慢放入水中(说明为什么要用细线绑着慢慢放入水中),此时水面上升,分别读出前、后两次量筒的示数,将两次的示数相减,就可以得到石块的体积。这种方法测量不规则形状固体的体积,以后在学习中将经常用到。
学生分组实验,教师巡视,并对个别学生的操作提出更正。(实验结束后,要求学生整理实验器材)
六、课堂小结
我们学习了利用刻度尺和量筒测量物体的长度和体积。
注意刻度尺的使用规则和读数。
再次强调误差与错误的区别。
重复利用量筒测量不规则形状物体体积的方法。
七、布置作业
课文第28页作业第1、2、3题。
在家中利用刻度尺测量自己物理书的长和宽,要求估读,并作好记录。
课时作业设计
1、用刻度尺测量时,尺要沿着物体的,不利用磨损的,读数时,视线要与尺面,在精确测量时,要估读到 的下一位。
2、某人测得一本字典正400页厚度为18.0mm,则该字典正文每张纸厚度为 mm。
3、如图所示,物体的长度应记作 cm。
4、给下面的测量数据填上适当单位
某同学身高是15.86
教室的黑板长度是33.5
课本纸张的厚度约为0.08
武汉长江大桥全长为1750。
5、某同学利用柔软棉线测出地图上长江长63.00cm,北京至郑州铁路线长6.95cm。经查书,长江实际长度为6300km。则此地图的比例尺为 ,北京至郑州实际铁路线长为。
6、下列单位换算的写法中正确的是:
A.12cm=12×1/100=0.12m B.12cm=12cm×1/100=0.12m
C.12cm=12cm×1/100m=0.12m D.12cm=12×1/100m=0.12m
7、给你一段涤良线(柔软、弹性较小的一种线)和一把刻度尺,你怎样测出如图所示曲线的长度?
8、如图,把金属块放入装有70cm3水的量筒内,量筒中水面如图2所示,则金属块的体积是cm3。
9、完成下列单位换算:
(1)156cm=m=nm
(2)500mL=L
(3)300cm3=m3=mm3
补充资料
纳米材料的特殊性质
随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。(1)特殊的光学性质 当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。(2)特殊的热学性质 固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327C左右;银的常规熔点为670C,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~1微米的铜、镍超微颗粒制成导电浆料可代替钯与银等贵金属。超微颗粒熔点下降的性质对粉末冶金工业具有一定的吸引力。例如,在钨颗粒中附加0.1%~0.5%重量比的超微镍颗粒后,可使烧结温度从3000℃降低到1200~1300℃,以致可在较低的温度下烧制成大功率半导体管的基片。(3)特殊的磁学性质人们发现鸽子、海豚、蝴蝶、蜜蜂以及生活在水中的趋磁细菌等生物体中存在超微的磁性颗粒,使这类生物在地磁场导航下能辨别方向,具有回归的本领。磁性超微颗粒实质上是一个生物磁罗盘,生活在水中的趋磁细菌依靠它游向营养丰富的水底。通过电子显微镜的研究表明,在趋磁细菌体内通常含有直径约为2′10-2微米的磁性氧化物颗粒。小尺寸的超微颗粒磁性与大块材料显著的不同,大块的纯铁矫顽力约为80安/米,而当颗粒尺寸减小到2′10-2微米以下时,其矫顽力可增加1千倍,若进一步减小其尺寸,大约小于6′10-3微米时,其矫顽力反而降低到零,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已作成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等。利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体。
|
|