|
教学目标:
1.进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点,选择计算方法,解决一些简单实际问题。
2.进一步发展学生的空间观念和空间想象能力。
3.密切数学与生活的联系,提高学生学习数学的学习兴趣。
教学重、难点:能根据所求问题的具体特点,选择计算方法解决一些简单的实际问题。
教学准备:多媒体课件,抽纸,长方体通风管模型。学生自备长方体和正方体的模型。
教学过程:
一、复习长方体和正方体的特征
师:长方体有什么特征?
(长方体有6个面,12条棱,8个顶点。长方体相对的两个面完全相同,相对的棱长度相等。)
正方体呢?
(正方体也有6个面,12条棱,8个顶点。正方体的6个面是完全相同的正方形,正方体的12条棱长度相等。)
师最后根据学生的口答小结。
二、复习长方体和正方体的表面积的计算方法
1.复习长方体每个面的面积的计算方法。
提问:长方体上、下面的面积怎样计算?前、后面的面积怎样计算?左、右面的面积呢?
学生口答,课件及时反馈。
2.复习长方体和正方体表面积、底面积和侧面积的计算方法。
课件依次出示长方体和正方体,逐个提问。课件及时反馈。
3.求长方体和正方体的表面积(只列式不计算)。
第一个是长方体,6个面都是长方形;
第二个是长方体,有2个面是正方形,其余4个面是长方形;
第三个是正方体。
先分析已知条件和所求问题,再说说先求什么,再求什么,怎样列式。
三、复习长方体和正方体表面积的实际应用
1.长方体和正方体表面积的实际应用的基础练习。
(1)出示一组物体的图片。
师:请同学们想一想可能计算这些物体的什么,实际是求长方体哪几个面的面积?想好以后,与同座位的同学互相说一说。
(2)计算无盖的长方体玻璃鱼缸的玻璃面积。
先审题:要求玻璃面积,实际是求长方体哪几个面的面积?
再口答算式,并计算。
(3)计算火柴盒内盒和外盒的面积。
先独立思考,再集体交流。
根据学生口答板书:
火柴盒内盒面积(5个面的面积)=前、后两个面的面积+左、右两个面的面积+下面一个面的面积=6×1×2+4×1×2+6×4=44(平方分米)
火柴盒外盒面积(4个面的面积)=前、后两个面的面积+左、右两个面的面积=6×1×2+4×1×2=20(平方分米)
(4)选择题
(1)1.一个通风管的横截面是边长0.2米的正方形,长2.5米,如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?( )
A、 0.2×2.5×50
B、0.2×0.2×2.5×50
C、 0.2×2.5×4×50
还可以怎样计算?
展示长方体通风管展开成一个长方形的过程,帮助学生思考。
还可以列式为:0.2×4×2.5×50
(2)一个长方体游泳池,长20米,宽10米,深2米。在这个游泳池四壁及底面贴上瓷砖,要贴多少平方米? ( )
A、 20×10+(20×2+10×2) ×2
B、20×10+20×2+10×2
C、(20×10+20×2+10×2)×2
(3)一个棱长3分米的正方体,在它的顶点处切下一个棱长1分米的小正方体,表面积和原来相比( )。
A、减少了
B、不变
C、增加了
(4)一个正方体的棱长之和是24厘米,它的表面积是( )平方厘米。
A、6 B、48 C、24
(5)如果长方体的长、宽、高都扩大3倍,那么它的表面积扩大( )倍。
A、3 B、6 C、9
(6)把两个正方体拼成一个长方体,它的表面积减少( )面的面积。
A、1 B、2 C、3
2.拓展练习。
(1)学校大门前有6级台阶,每级台阶长6米,宽0.4米,高0.2米。6级台阶一共占地多少平方米?给这些台阶上铺地砖,至少需要铺多少平方米地砖?
(2)设计包装纸。
a.把两包抽纸拼在一起有几种拼法?哪种最省包装材料?
b.把四包抽纸拼在一起有几种拼法?哪种最省包装材料?省多少平方厘米?
3.思考题。
下图表示用棱长1厘米的正方体摆成的物体。(书第18页)
(1)从上面、正面和左侧面看到的分别是什么形状?试着画一画。
(2)这个物体的表面积是多少平方厘米?
(3)在这个物体上添加同样大的正方体,补成一个大正方体。这个大正方体的表面积至少是多少平方厘米?
四、课堂作业
1、小区大门前有8级台阶,每级台阶长5米,宽0.4米,高0.2米。
(1)8级台阶一共占地多少平方米?
(2)给这些台阶上铺地砖,至少需要铺多少平方米地砖?
2、一间教室长8米,宽70分米,高40分米,现在要粉刷顶面和四面墙壁,门窗和黑板面积一共是30平方米。
(1)粉刷的面积是多少平方米?
(2)如果每平方米需工料费1.5元,粉刷工料费共需多少元?
|
|