绿色圃中小学教育网

 找回密码
 免费注册

QQ登录

只需一步,快速开始

楼主: 梦想成真
打印 上一主题 下一主题

《相交与垂直》课件

[复制链接]
8#
发表于 2008-12-28 11:46:00 | 只看该作者

小学生学习数学的方法及培养途径

为了适应学生的学习心理,发掘其潜能,义务教育教材已适当地降低了对数学知识体系严密性的要求,拉开了知识结构之间的“距离”,并以“结构化”与“问题化”互补的教材体系呈现出来。因而,学生必须掌握、并且具有一定的学习数学的方法,提高和发展学习能力,这也是上海“数学教育行动纲领”所提出的“基础能力”的要求。
  为此,我们对小学生应具有的主要的学习数学的方法及其相应的培养途径进行了实践,以发展学生学习数学的能力。
  1.良好的学习习惯。叶圣陶先生说过:凡是好的态度和好的方法,都要使它化成习惯。只有熟练成了习惯,好的态度和方法才能随时随地表现……一辈子受用不尽。叶老的话阐明了良好的学习习惯和学习方法的关系:良好的学习习惯既是学生形成学习方法的基础,又是他们具有了一定的学习方法的集中体现。因此,培养学生从小养成良好的学习习惯具有十分重要的意义。主要的培养途径有:
  (1)课前预习。预习的方法:明天要学习什么内容,是否能用今天学习的知识去解决它;在不懂的地方画上记号;尝试地做一二道题,看哪里有困难……上课伊始,教师先检查学生预习情况,并把上面的预习方法经常交代给学生。学生预习后就可带着问题投入新课的学习,上课时就更有目的性和针对性。这样做对于提高课堂学习的效果,养成学生的自学习惯,提高自学能力都有积极作用。
  预习数学内容会显得较枯燥,所以,教师要经常表扬自觉预习的学生,以激励全体学生预习的积极性。
  (2)课后整理。要养成先复习当天学习的知识,再做作业,最后,把学习内容加以整理的习惯。例如,能被2、5整除的数的特征,一位同学整理如下:
  
       个位是0的数同时能被2和5整除
  这样,容易使学生学到的知识系统化,从而内化为他们的认知结构。
  (3)在课内,要求学生:一要仔细看教师的操作演示、表情、手势;二要全神贯注地听老师的提问、点拨、归纳以及同学的发言;三要积极思考、联想;四要踊跃发表自己的想法,有困惑应发问,敢于质疑。
  (4)要养成检查验算的习惯。检查验算的过程既是一种培养学生负责态度的途径,又是学生对自己思维活动的再认识过程。如有题:一个水池能盛水54吨,甲、乙两个水管同时向池内放水,3小时放满。
  已知甲管每小时放水5吨,乙管每小时放水多少吨?学生设乙管每小时放水x吨,且列方程:5×3+3x=54,54-3x=5×3,54-5×3=3x,(x+5)×3=54,5+x=54÷3,54÷3-x=5……最后解得x=13。学生一方面要检验x=13是否是方程的解;另一方面要检查列方程的依据是什么,解答过程是否简练。如果发现错了,那么失败就成了成功之母。这种“认知元”的发展是学生养成良好的学习习惯的重要标志。
  2.尝试活动。学生原有的认知结构具有同化作用,这是学生能进行尝试活动的心理支撑点。因此,学生具有了某一认知结构后,接着学习相应的后面知识时,教师可让学生去尝试学习。例如,学生掌握了整数四则混合运算顺序之后,可请他们去尝试学习“小数四则混合运算”,然后,教师稍作点拨:整数四则混合运算顺序同样适用于“小数四则混合运算”。学生就可同化新知识,从而构建新的认知结构:整小数四则混合运算的顺序都是:先乘除,后加减,有括号的要先算括号里的。
  当学生掌握了“分数乘法应用题”,又理解了比与分数之间的关系以后,教师可让学生去尝试学习“按比例分配”的应用题。
  3.操作活动。当学生原有的认知结构似乎能同化又同化不了新知识时,他们的学习心理就有求助于外围行为的倾向。这时,教师就请学生去进行动手操作活动,进而刺激其心理,促进他们实现学习心理的相互作用、互为转化——学到新知识。
  例如,教学“圆的周长”,学生引起心理反映:只能测量、计算直线图形的周长,用什么方法来得到曲线图形的周长呢?这时,教师就可要求学生分组进行操作活动,以满足他们的心理对行为的要求:1元硬币、瓶盖、飞碟等的直径与相应的圆周长分别是多少?并把得到的结果记入下表:

  测量曲线图形的周长,学生还是第一次,可是当学生看到事先准备好的线、绳和直尺,他们借助对图形周长概念的理解,首先还是想出了用测量的办法求圆的周长:有些学生用线绕测量物一周,再拉直放在直尺上量得其周长;有些学生将测量物在直尺上滚一圈测得其周长。学生的测量活动(行为)反过来又必将引起其心理活动,所以,教师这时可要求学生对测量的结果进行思维活动:从所填的表格中你们能发现什么规律?
  当学生无知识基础可作学习新知识的支撑点时,教师可直接请学生进行多次的操作活动,以不断刺激其心理,引起思维活动,从而达到理解新知的目的。例如,正、负数的加法:
(+3)+(-2)=+1+2-2=+1

  4.观察活动。所谓观察是指学生对客观事物或某种现象的仔细察看,因而是一种有意注意。培养的途径是:教师提供的“客观事物或某种现象”特征有序、背景鲜明,而且要给出一些观察的思考题。这样有助于学生明确观察目标,进而使他们边观察,边思考,边议论,边作观察记录,以发现数学规律、本质。
  “乘法分配律”的教学,根据例证得到三个等式:
  (5+3)×2=5×2+3×2
  (6+4)×30=6×30+4×30
  (25+9)×4=25×4+9×4
  教师要求学生结合下面的两个思考题观察上面的三个等式都具有什么相同点(即规律)。①竖里观察,等式的左边都有什么特点?等式右边又有什么特征?②横里观察,等式的左边与右边有怎样的关系?
  教师再要求学生把记录的文字:两个加数的和与一个数相乘,两个积的和,两个加数分别与一个数相乘……整理一下就得到了“乘法分配律”。
  低年级学生观察时更需要意志力参与。教学“几个和第几个”时,教师请小朋友仔细看主题图:有几个人排队上公共汽车?小明排在第几个?教师在示范时又提醒学生:看谁看得认真,第一行从左边起老师涂色了几只?第二行从左边起第几只涂了色?然后,教师写上“3只”、“第3只”。

  教师运用语言的调节功能,激励低年级学生有意识地进行观察,这样能有效地促进学生心理转化,学到新知识。
  5.思考活动。所谓思考是指学习者对学习对象进行比较深刻的、周到的、复杂的思维活动过程。
回复

使用道具 举报

9#
发表于 2008-12-28 11:47:00 | 只看该作者

关于小学低年级应用题的思考与探索

从应用题教学的发展过程看,低年级应用题是整个应用题教学的基础,其中最主要的是简单应用题教学。由于小学生的抽象概括能力差,即使“朗朗上口”也不一定能掌握它的解法。有些学生在解答应用题时,学过的就不加思索的做出来,如果稍加改动就不知如何下手,要改变这种情况,就要求教师在平时加强“双基”教学的同时,抓好三方面的工作:
  一、教学生学会审题,培养学生认真审题的习惯
  应用题的难易不仅取决于数据的多少,往往是由应用题的情节部分和数量关系交织在一起的复杂程度所决定。同时题目中的叙述是书面语言,对低年级学生的理解会有一定的困难,所以解题的首要环节和前提就是理解题意,即审题。
  读题必须认真,仔细。通过读题来理解题意,掌握题中讲的是一件什么事?经过怎样?结果如何?通过读题弄清题中给了哪些条件?要求的问题是什么?实践证明学生不会做,往往缘于不理解题意。一旦了解题意,其数量关系也将明了。因此,从这个角度上讲理解了题意就等于题目做出了一半。当然还要让学生学会边读边思考。
  二、加强数量关系的分析与训练
  数量关系是指应用题中已知数量与已知数量,已知数量与未知数量之间的关系。只有搞清楚数量关系才能根据四则运算的意义恰当的选择算法,把数学问题转化成数学式子,通过计算进行解答。因此,低年级教学中简单应用题的数量关系,实际上是四则运算的算理与结构。所以从应用题教学的一开始就要着重抓好分析数量关系这一环。
  为此,首先要重视教学中的分析与说理。这是因为不仅要通过数量关系的分析找出解答的计算过程,同时计算过程本身也反映了解题的算理。所以要重视教给学生联系运算意义,把应用题中叙述的情节语言转换成数学运算,在理解的基础上用学生自己的语言叙述。对每一道题的算法,教师都要认真说理,也要让学生去说理,使学生能够将数量关系从应用题的情节中抽象出来纳入到已有的概念中去。
  例如在教学求两数相差多少,求比一个数多几(或少几)的数的应用题时,通过学生操作和教师直观演示,使学生明确:甲数比乙数多,那么甲数就包括两部分,其中一部分和乙数同样多,另一部分是比乙数多的部分,从甲数里去掉和乙数同样多的部分,剩下的就是比乙数多的部分,所以用减法计算。这样教学使学生对应用题的数量关系比较清楚,掌握了一类问题的分析思路,从而避免小学生仅仅依靠对题中某些词语的臆断或盲目尝试来选择算法。既培养了学生的解题能力,又初步发展了学生的分析、推理能力,为今后解更复杂的应用题打下基础。
  其次要重视简单应用题基本结构的教学。使学生明确简单应用题由两个已知条件和一个问题组成,缺少条件要补条件,缺少问题要补问题才能构成一道完整的应用题,同时条件与条件,条件与问题之间要有一定的联系。教学时可以进行提问题,填条件的练习。通过训练,使学生看到相关联的两个条件能提出问题,看到一个问题一个条件就能意识到还要补充什么条件。这一训练还可以使学生加深对应用题数量关系的认识,也为今后教学复合应用题提出中间问题做准备。
  例如:第三册有这样两个题:
  1.40个同学去检查身体,每5个同学一组,_____?
  2.小丽做了20朵红花,____。每个同学分得几朵?
  使学生明白:根据总数、份数可求出每份数;根据总数、每份数可求出份数,清楚意识到每份数必须和份数对应。通过独立思考、分组讨论,激发了学生的学习兴趣。
  另外,要注意使学生切实掌握解题思路。解题思路是指解答应用题的思考线索。只有切实掌握解题思路才能做到思维有方向、解题有依据,使小学生的思维逐步能够借助表象和概念进行。能在已有知识经验的基础上进行一些较复杂的判断。
  例如:在学生掌握了“大数=小数+相差数”,“小数=大数-相差数”这两个关系式后进行对比练习:
  1.小明有28本书,小明比小华多6本,小华有多少本?
  2.小明有28本书,小明比小华少6本,小华有多少本?
  3.小明有28本书,小华比小明多6本,小华有多少本?
  4.小明有28本书,小华比小明少6本,小华有多少本?
  5.小华有28本书,小华比小明少6本,小明有多少本?
  6.小华有28本书,小华比小明多6本,小明有多少本?
  7.小华有28本书,小明比小华多6本,小明有多少本?
  8.小华有28本书,小明比小华少6本,小明有多少本?
  这八道题看似很简单,如果要想全对,也不是件容易的事,教师要鼓励学生讲出自己的想法,掌握思考分析方法,让他们能尝试到胜利的喜悦,从而增加他们分析问题的信心。通过这个练习使学生知道,分析数量关系是正确解答应用题的关键,并且学会如何把条件和问题,按叙述的情节转变为数学运算。
  同时还要重视解题基本方法的训练。一道应用题呈现在学生面前如何根据已知条件确定解法,这需要运用各种思维方法进行探索。由因导果的综合法和执果索因的分析法是最基本的两种逻辑方法,采用这两种方法探索的关键在于确定正确的方向。教学中要抓好这两种基本方法的训练,明确它们的区别和联系,引导学生掌握解决问题的途径、方法和步骤。课本中不同数量关系的对比的出现也有利于这两种基本方法的掌握。
  例如第四册开始接触两步计算的应用题。一开始由教师提出问题,引导学生思考,避免包办代替,注意指导学生复述思考过程。在练习时试着让学生自己去模仿思考,比较完整地叙述解题思路。遇到应用题尽量让学生自己去思考,然后集体分析讨论,使出错的学生明白错在何处,别人是怎样分析的,把别人的思维过程作为研究的对象,学着分析。总之,分析能力的培养是一点一滴进行的,切忌操之过急,教师要注意帮助学生去归纳、总结,久而久之,学生的分析能力也就得到了提高。
  三、帮助学生掌握正确的解题步骤
  在小学虽然概括解题步骤是在学习了复合应用题时才进行的,但低年级开始应用题教学时就要注意引导学生按正确的解题步骤解答应用题,逐步养成良好的习惯,特别是检查验算和写好答案的习惯。
  一道题做的对不对,学生要能自我评价,对的强化,不对的反馈纠正,这实际上是一个推理论证的过程。完成列式计算只解决了“怎样解答”的问题,而推理论证是解决“为什么这样解答”的问题。然而低年级学生不善于从已知量向未知量转化,有时又受生活经验的制约无法检验明显的错误,因此,一要教给学生验算的方法,如:联系实际法、问题条件转换法和另解法等;还可以先由师生共同完成,然后过渡到在教师指导下学生进行,最后发展成学生独立完成。
  在教学中还经常遇到学生不重视写答案,只写“是多少”就算完了的现象。答案实际上是很重要的,是一件事情的结束。我们做事强调有好的开端,也得有好的结束,那才是一件完整的事,我们做题就同做工作一样,应该有完美的结束。因此,不仅要使学生重视写答案,还要使学生学会写答案。
  总之,从应用题教学的发展来看,低年级应用题教学是整个应用题教学的基础,学生在这个阶段学习中对应用题的结构、基本数量关系和解题思维方法掌握的如何,都将直接影响以后应用题的学习,因此必须从基础抓起,做好低年级应用题的教学

回复

使用道具 举报

10#
发表于 2008-12-28 11:49:00 | 只看该作者

小学低年级数学教学激发学生学生兴趣

用形象生动的语言来激发学习兴趣。数学的教学内容较抽象、枯燥、无味,它没有形象生动的语言及生动的故事情节,不易引起学生对数学的学习兴趣。因此,在教学生认数和记数时,我采用具体形象的事物和一些有趣的故事来激发学生的兴趣。如:为了让学生记住数字1—9的字形,我教学生背诵顺口溜:“1象粉笔,2象鸭子,3象耳朵,4象小旗,5象钩子,6象口哨,7象银锄,8象葫芦,9象蝌蚪。”以此来帮助学生记住字形。通过这样的教学,赋予数学内容以一定的感情色彩,将数学的知识渗透到童话的故事中去,从而激发了学生对数学的学习兴趣。
  利用直观教具、操作学具、电化教学手段来激发学习兴趣。低年级的学生抽象思维能力较差,可是他们好动、好奇心强,对新奇动人的事物比较敏感。在教学过程中,我采用直观教具、电化教学及操作学具来激发学生的学习兴趣。如教“求一个数比另一个数多(少)几的应用题”时,让学生先摆10个三角形,然后在下面摆6个圆形,并向学生说明摆的时候要从左边起,把圆形和三角形一个对着一个地摆。教师问:“哪一行摆得多?看看第一行里的三角形哪一部分和圆同样多?请你们用手指画一画,同桌互相检查一下,看看画得对不对?再画出三角形比圆多的部分。”接着问:“同样多的有几个?三角形比圆多几个?”再启发学生想,三角形比圆多,三角形可以看成是哪部分组成的?多的部分是几个三角形?从而使学生直观地看出三角形多,圆少,三角形可以分成两部分:一部分是和圆同样多的部分,一部分是比圆多的部分,从而体会到多的数能分成两部分,为学习新知识做好铺垫。
  利用数学游戏来激发学生的学习兴趣。我在教小学低年级的学生时,选择一些符合教学内容的游戏来激发学生的学习兴趣,使学生能在轻松、愉快的气氛中巩固学到的数学知识。如复习“小数的减法”时,可让学生做“争当模范营业员”的游戏,教师一手拿着人民币,一手举着所购买的物品的价格卡,让学生算出要找回的钱,并写在练习本上,五次后评出模范营业员,这样促使学生进一步巩固学到的知识。
  采用启发式教学来调动学生学习的积极性。低年级学生自我控制的能力较差,注意力不能持久。根据这一特点,我在教学过程中及时、巧妙地提出一些富有启发性的问题,让学生进行思考回答,从而集中注意力。同时,对学生准确回答的问题加以肯定,对不懂回答问题的学生给予启发引导并加以鼓励,从而调动了他们的学习积极性。
  采用灵活多变的教学方式来激发兴趣。低年级学生容易产生“喜新厌旧”的情绪,在教学中我采用灵活多样的形式、方法进行教学,给学生以新异感,让学生对数学产生浓厚的兴趣。如:通过讲故事、设问或复习旧知识引入新课,用电化教学、直观教具、数学游戏、课堂提问、练习形式多样化……等方法,使学生不会产生厌烦感,从而提高对数学的学习兴趣,并保证数学教学的顺利进行。
回复

使用道具 举报

11#
发表于 2008-12-28 11:50:00 | 只看该作者

小学数学学习的思考方法

一、数形结合的思想方法
    数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。
    例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。
  二、集合的思想方法
    把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。
    如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。
  三、对应的思想方法
    对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。
    如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。
  四、函数的思想方法
    恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。
    函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。
  五、极限的思想方法
    极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。
    现行小学教材中有许多处注意了极限思想的渗透。 在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1 ÷ 3 = 0.333…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。
  六、化归的思想方法
    化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。
    如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。
  七、归纳的思想方法
    在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。
    如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。
  八、符号化的思想方法
    数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。
    人教版教材从一年级就开始用“□”或“( )”代替变量 x ,让学生在其中填数。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□ ○ □ = □ (个)。
    符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此 ,教师在教学中要注意学生的可接受性。
  九、统计的思想方法
    在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
    小学数学除渗透运用了上述各数学思想方法外,还渗透运用了转化的思想方法、假设的思想方法、比较的思想方法、分类的思想方法、类比的思想方法等。从教学效果看,在教学中渗透和运用这些教学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。总之,在教学中,教师要既重视数学知识、技能的教学,又注重数学思想、方法的渗透和运用,这样无疑有助于学生数学素养的全面提升,无疑有助于学生的终身学习和发展。
回复

使用道具 举报

12#
发表于 2008-12-28 11:51:00 | 只看该作者

数学阅读技巧

一、阅读引言
  1.要注意章节标题,因为它标出了课文主题;2.要注意理解段落大意,弄明白引入新知识的直观素材;3.要抓住关键字、词、句和重要结论,这对于理解新知识非常重要。
  二、阅读概念
  1.要正确理解概念中的字、词、句,能正确进行文字语言,图形语言和符号语言的互译;2.要注意联系实际找出正反例子或实物;3.要弄明白概念的内涵和外延,就是说既能区分相近的概念,又能知道其适用范围。
  三、阅读定理
  1.要注意分清定理的条件和结论;2.要探讨定理的证明途径和方法,通过与课本对照,分析证法的正误、优劣;3.要注意联系类似定理,进行分析比较、掌握其应用;4.要思考定理可否逆用,推广及引伸。
  四、阅读公式
  1.要弄明白公式的来龙去脉,会推导公式;2.要明白公式的特征并能想法子记住;3.要注意公式的应用条件,弄明白有关公式的内在联系,了解公式的运用、逆用、合用,变用和巧用。
  五、阅读例题
  1.要认真审题,分析解题过程的关键所在,尝试解题;2.要和课本比较解法的优劣,并使解题过程的表达既简捷又符合书写格式;3.要注意总结解题规律并努力去探求新的解题途径。
回复

使用道具 举报

13#
发表于 2008-12-28 11:52:00 | 只看该作者

数学中的记忆

记忆能力是掌握基础知识,形成基本能力的基础。如果没有较强的记忆能力,那么,观察能力,想象能力,思维能力,创造能力都不会得到很好的展示。所以就更体现了重视记忆能力培养的重要性。
  首先,要培养学生掌握一些科学的记忆方法。如:口诀记忆法、图象记忆法、联想记忆法、系统记忆法、类比记忆法、规律记忆法等。但各种好的记忆方法、都是建立在对知识内容真正理解的基础之上的,要做到真正的理解,必须自己勤动脑、勤思考、勤动手,多做多练,对学过的知识从不同的侧面进行概括、归纳、整理,把它真正变成自己的知识,这样获得的知识才能记得又准、又快、又牢、又活,达到触类旁通,灵活运用的效果。
  其次,要结合记忆的方法,有计划、有目的地培养学生,训练学生进行记忆并进行应用。
  譬如,在学习《角》这一内容时,采用如下记忆方法:
  理解记忆法。如直线与平角的概念,重点理解它们的区别:直线是一条线,无端点及顶点,而平角是一个角,平角有顶点和内部,而直线没有。
  规律记忆法。如周角、平角、直角,只要牢记其中的一个大小,在记住它们的倍数关系,其他两个角的大小也就记牢了。结合图形特征记忆,如角平分线概念,每当看到角平分线的字样,头脑中便显现出图形,就十分容易记住他们的两个本质特征:(1)是一条射线,且以角的顶点为端点,在这个角的内部;(2)把这个角分成相等的两个角。这些方法都有利地培养了学生的记忆能力。
回复

使用道具 举报

14#
发表于 2008-12-28 11:53:00 | 只看该作者

解答应用题的一般步骤

1.审题
  所谓审题,就是理解题意。看到一道应用题,要反复默读,弄清已知条件和提出的主要问题。
  2.分析数量关系
  分析数量关系就是指题目中已知数量和未知数量及所求问题之间的相互关系。如某班有男生27人,有女生22人,问该班共有学生多少人?其数量关系是加数与和之间的关系。如果问,男生是女生的多少倍?则数量关系就是倍数比的关系。在应用题中,有的题数量关系简单,很容易弄清,有的题则数量关系复杂,这就需要对已知条件中所有的数量进行综合分析,只有弄清数量关系,才能找到解题途径。
  3.列式解答
  依据分析得到的数量关系,列出算式,算出结果。
  4.验算并写出答案
  检验解答过程是否合理,结果是否正确,与原题的题意是否相符,然后写出答案。
  检验的方法:
  (1)估算。看一看计算的结果是否合乎情理。应用题来自生产、生活实际,数据一般都要符合实际情况,如果发现计算结果与实际不符,就要检查题目是不是做错了。
  (2)代入。把算出的结果当作已知条件,按照题目中的数量关系代入运算,检查所得的结果是否与原题已知条件相符。
  (3)另解。验算时,如果能采用另一种解法,可以比较两种方法所得结果的情况。如答案一致,就验证了解答正确。
  上面说的应用题的解答步骤是一般规律,可以概括一般的解题思考过程和计算过程。在实际解答时,要具体问题具体分析,如果没有特别明确的要求,这几个步骤不必都写出来,只要正确地列出算式,求出结果,写出答案就可以了。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

绿色圃中小学教育网 最新主题

GMT+8, 2024-12-22 18:11

绿色免费PPT课件试卷教案作文资源 中小学教育网 X3.2

© 2013-2016 小学语文数学教学网

快速回复 返回顶部 返回列表